예제 #1
0
    def forward_for_single_feature_map(self, anchors, objectness,
                                       box_regression):
        """
        Arguments:
            anchors: list[BoxList]
            objectness: tensor of size N, A, H, W
            box_regression: tensor of size N, A * 4, H, W
        """
        device = objectness.device
        N, A, H, W = objectness.shape

        # put in the same format as anchors
        objectness = permute_and_flatten(objectness, N, A, 1, H, W).view(N, -1)
        objectness = objectness.sigmoid()

        box_regression = permute_and_flatten(box_regression, N, A, 4, H, W)

        num_anchors = A * H * W

        pre_nms_top_n = min(self.pre_nms_top_n, num_anchors)
        objectness, topk_idx = objectness.topk(pre_nms_top_n,
                                               dim=1,
                                               sorted=True)

        batch_idx = torch.arange(N, device=device)[:, None]
        box_regression = box_regression[batch_idx, topk_idx]

        image_shapes = [box.size for box in anchors]
        concat_anchors = torch.cat([a.bbox for a in anchors], dim=0)
        concat_anchors = concat_anchors.reshape(N, -1, 4)[batch_idx, topk_idx]

        proposals = self.box_coder.decode(box_regression.view(-1, 4),
                                          concat_anchors.view(-1, 4))

        proposals = proposals.view(N, -1, 4)

        result = []
        for proposal, score, im_shape in zip(proposals, objectness,
                                             image_shapes):
            boxlist = BoxList(proposal, im_shape, mode="xyxy")
            boxlist.add_field("objectness", score)
            boxlist = boxlist.clip_to_image(remove_empty=False)
            boxlist = remove_small_boxes(boxlist, self.min_size)
            boxlist = boxlist_nms(
                boxlist,
                self.nms_thresh,
                max_proposals=self.post_nms_top_n,
                score_field="objectness",
            )
            result.append(boxlist)
        return result
예제 #2
0
    def filter_results(self, boxlist, num_classes):
        """Returns bounding-box detection results by thresholding on scores and
        applying non-maximum suppression (NMS).
        """
        # unwrap the boxlist to avoid additional overhead.
        # if we had multi-class NMS, we could perform this directly on the boxlist
        boxes = boxlist.bbox.reshape(-1, num_classes * 4)
        scores = boxlist.get_field("scores").reshape(-1, num_classes)

        device = scores.device
        result = []
        # Apply threshold on detection probabilities and apply NMS
        # Skip j = 0, because it's the background class
        inds_all = scores > self.score_thresh
        for j in range(1, num_classes):
            inds = inds_all[:, j].nonzero().squeeze(1)
            scores_j = scores[inds, j]
            boxes_j = boxes[inds, j * 4 : (j + 1) * 4]
            boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy")
            boxlist_for_class.add_field("scores", scores_j)
            boxlist_for_class = boxlist_nms(
                boxlist_for_class, self.nms
            )
            num_labels = len(boxlist_for_class)
            boxlist_for_class.add_field(
                "labels", torch.full((num_labels,), j, dtype=torch.int64, device=device)
            )
            result.append(boxlist_for_class)

        result = cat_boxlist(result)
        number_of_detections = len(result)

        # Limit to max_per_image detections **over all classes**
        if number_of_detections > self.detections_per_img > 0:
            cls_scores = result.get_field("scores")
            image_thresh, _ = torch.kthvalue(
                cls_scores.cpu(), number_of_detections - self.detections_per_img + 1
            )
            keep = cls_scores >= image_thresh.item()
            keep = torch.nonzero(keep).squeeze(1)
            result = result[keep]
        return result
    def select_over_all_levels(self, boxlists):
        num_images = len(boxlists)
        results = []
        for i in range(num_images):
            scores = boxlists[i].get_field("scores")
            labels = boxlists[i].get_field("labels")
            boxes = boxlists[i].bbox
            boxlist = boxlists[i]
            result = []
            # skip the background
            for j in range(1, self.num_classes):
                inds = (labels == j).nonzero().view(-1)

                scores_j = scores[inds]
                boxes_j = boxes[inds, :].view(-1, 4)
                boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy")
                boxlist_for_class.add_field("scores", scores_j)
                boxlist_for_class = boxlist_nms(boxlist_for_class,
                                                self.nms_thresh,
                                                score_field="scores")
                num_labels = len(boxlist_for_class)
                boxlist_for_class.add_field("labels",
                                            jt.full((num_labels, ), j).int32())
                result.append(boxlist_for_class)

            result = cat_boxlist(result)
            number_of_detections = len(result)

            # Limit to max_per_image detections **over all classes**
            if number_of_detections > self.fpn_post_nms_top_n > 0:
                cls_scores = result.get_field("scores")
                image_thresh, _ = jt.kthvalue(
                    cls_scores,
                    number_of_detections - self.fpn_post_nms_top_n + 1)
                keep = cls_scores >= image_thresh
                keep = jt.nonzero(keep).squeeze(1)
                result = result[keep]
            results.append(result)
        return results
    def filter_results(self, boxlist, num_classes):
        """Returns bounding-box detection results by thresholding on scores and
        applying non-maximum suppression (NMS).
        """
        # unwrap the boxlist to avoid additional overhead.
        # if we had multi-class NMS, we could perform this directly on the boxlist
        boxes = boxlist.bbox.reshape(-1, num_classes * 4)
        scores = boxlist.get_field("scores").reshape(-1, num_classes)

        result = []
        # Apply threshold on detection probabilities and apply NMS
        # Skip j = 0, because it's the background class
        # inds_all = (scores > self.score_thresh).int()
        inds_all = scores > self.score_thresh
        # print(self.score_thresh,num_classes)
        # print(inds_all.shape)
        # inds_all = inds_all.transpose(1,0)
        inds_nonzeros = [ inds_all[:,j].nonzero() for j in range(1, num_classes) ]
        jt.sync(inds_nonzeros)

        for j in range(1, num_classes):
            # with nvtx_scope("aa"):
            #     inds = inds_all[:,j].nonzero().squeeze(1)
                
            # with nvtx_scope("bb"):
            #     scores_j = scores[inds, j]
            #     boxes_j = boxes[inds, j * 4 : (j + 1) * 4]
            # with nvtx_scope("cc"):
            #     boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy")
            # with nvtx_scope("cc2"):
            #     boxlist_for_class.add_field("scores", scores_j)
            # with nvtx_scope("cc3"):
            #     boxlist_for_class = boxlist_nms(
            #         boxlist_for_class, self.nms
            #     )
            # with nvtx_scope("dd"):
            #     num_labels = len(boxlist_for_class)
            # with nvtx_scope("dd2"):
            #     boxlist_for_class.add_field(
            #         "labels", jt.full((num_labels,), j).int32()
            #     )
            #     result.append(boxlist_for_class)

            # inds = inds_all[:,j].nonzero().squeeze(1)
            inds = inds_nonzeros[j-1]
            if inds.shape[0] == 0:
                continue
            inds = inds.squeeze(1)
            scores_j = scores[inds, j]
            boxes_j = boxes[inds, j * 4 : (j + 1) * 4]
            boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy")
            boxlist_for_class.add_field("scores", scores_j)
            boxlist_for_class = boxlist_nms(
                    boxlist_for_class, self.nms
                )
            num_labels = len(boxlist_for_class)
            # print(j,num_labels)

            boxlist_for_class.add_field(
                    "labels", jt.full((num_labels,), j).int32()
                )
            result.append(boxlist_for_class)

        result = cat_boxlist(result)
        if not result.has_field('labels'):
            result.add_field('labels',jt.empty((0,)))
        if not result.has_field('scores'):
            result.add_field('scores',jt.empty((0,)))
        number_of_detections = len(result)

        #Limit to max_per_image detections **over all classes**
        if number_of_detections > self.detections_per_img > 0:
            cls_scores = result.get_field("scores")
            image_thresh, _ = jt.kthvalue(
                cls_scores, number_of_detections - self.detections_per_img + 1
            )
            keep = cls_scores >= image_thresh
            keep = jt.nonzero(keep).squeeze(1)
            result = result[keep]
        # # Absolute limit detection imgs
        # if number_of_detections > self.detections_per_img > 0:
        #     cls_scores = result.get_field("scores")
        #     scores, indices = jt.topk(
        #         cls_scores, self.detections_per_img
        #     )
        #     result = result[indices]
        return result
    def forward_for_single_feature_map(self, anchors, objectness,
                                       box_regression):
        """
        Arguments:
            anchors: list[BoxList]
            objectness: tensor of size N, A, H, W
            box_regression: tensor of size N, A * 4, H, W
        """
        # global II
        # import pickle
        N, A, H, W = objectness.shape

        # put in the same format as anchors
        objectness = permute_and_flatten(objectness, N, A, 1, H,
                                         W).reshape(N, -1)
        # print('objectness',objectness.mean())

        objectness = objectness.sigmoid()

        box_regression = permute_and_flatten(box_regression, N, A, 4, H, W)
        # print('regression',box_regression.mean())

        num_anchors = A * H * W

        pre_nms_top_n = min(self.pre_nms_top_n, num_anchors)
        # print(pre_nms_top_n)
        #print('objectness',objectness)
        # objectness = jt.array(pickle.load(open(f'/home/lxl/objectness_0_{II}.pkl','rb')))

        # print(objectness.shape)
        objectness, topk_idx = objectness.topk(pre_nms_top_n,
                                               dim=1,
                                               sorted=True)

        # print(II,'topk',topk_idx.sum(),topk_idx.shape)
        batch_idx = jt.arange(N).unsqueeze(1)

        # pickle.dump(topk_idx.numpy(),open(f'/home/lxl/topk_idx_{II}_jt.pkl','wb'))
        # topk_idx_tmp = topk_idx.numpy()
        # batch_idx = jt.array(pickle.load(open(f'/home/lxl/batch_idx_{II}.pkl','rb')))
        # topk_idx = jt.array(pickle.load(open(f'/home/lxl/topk_idx_{II}.pkl','rb')))

        # err = np.abs(topk_idx_tmp-topk_idx.numpy())
        # print('Error!!!!!!!!!!!!!!!!',err.sum())
        # print(err.nonzero())

        #print('box_regression0',box_regression)
        #batch_idx = jt.index(topk_idx.shape,dim=0)
        box_regression = box_regression[batch_idx, topk_idx]
        #print('box_regression1',box_regression)

        image_shapes = [box.size for box in anchors]
        concat_anchors = jt.contrib.concat([a.bbox for a in anchors], dim=0)
        concat_anchors = concat_anchors.reshape(N, -1, 4)[batch_idx, topk_idx]

        # box_regression = jt.array(pickle.load(open(f'/home/lxl/box_regression_{II}.pkl','rb')))
        # concat_anchors = jt.array(pickle.load(open(f'/home/lxl/concat_anchors_{II}.pkl','rb')))

        proposals = self.box_coder.decode(box_regression.reshape(-1, 4),
                                          concat_anchors.reshape(-1, 4))

        proposals = proposals.reshape(N, -1, 4)

        # proposals = jt.array(pickle.load(open(f'/home/lxl/proposal_{II}.pkl','rb')))
        # objectness = jt.array(pickle.load(open(f'/home/lxl/objectness_{II}.pkl','rb')))
        # II+=1

        result = []
        for i in range(len(image_shapes)):
            proposal, score, im_shape = proposals[i], objectness[
                i], image_shapes[i]
            boxlist = BoxList(proposal, im_shape, mode="xyxy")
            boxlist.add_field("objectness", score)
            boxlist = boxlist.clip_to_image(remove_empty=False)
            boxlist = remove_small_boxes(boxlist, self.min_size)
            boxlist = boxlist_nms(
                boxlist,
                self.nms_thresh,
                max_proposals=self.post_nms_top_n,
                score_field="objectness",
            )
            result.append(boxlist)
        return result