예제 #1
0
def train_model():
    """Model training loop."""
    model, weights_file, start_iter, checkpoints, output_dir = create_model()
    if 'final' in checkpoints:
        # The final model was found in the output directory, so nothing to do
        return checkpoints

    setup_model_for_training(model, weights_file, output_dir)
    writer = SummaryWriter(log_dir=output_dir)
    training_stats = TrainingStats(model, writer)
    CHECKPOINT_PERIOD = int(cfg.TRAIN.SNAPSHOT_ITERS / cfg.NUM_GPUS)

    for cur_iter in range(start_iter, cfg.SOLVER.MAX_ITER):
        if model.roi_data_loader.has_stopped():
            handle_critical_error(model, 'roi_data_loader failed')
        training_stats.IterTic()
        lr = model.UpdateWorkspaceLr(cur_iter,
                                     lr_policy.get_lr_at_iter(cur_iter))
        workspace.RunNet(model.net.Proto().name)
        if cur_iter == start_iter:
            nu.print_net(model)
        training_stats.IterToc()
        training_stats.UpdateIterStats(cur_iter)
        training_stats.LogIterStats(cur_iter, lr)
        writer.add_scalar('learning_rate', lr, cur_iter)

        if (cur_iter + 1) % CHECKPOINT_PERIOD == 0 and cur_iter > start_iter:
            checkpoints[cur_iter] = os.path.join(
                output_dir, 'model_iter{}.pkl'.format(cur_iter))
            nu.save_model_to_weights_file(checkpoints[cur_iter], model)

        if cur_iter == start_iter + training_stats.LOG_PERIOD:
            # Reset the iteration timer to remove outliers from the first few
            # SGD iterations
            training_stats.ResetIterTimer()

        if np.isnan(training_stats.iter_total_loss):
            handle_critical_error(model, 'Loss is NaN')

    # Save the final model
    checkpoints['final'] = os.path.join(output_dir, 'model_final.pkl')
    nu.save_model_to_weights_file(checkpoints['final'], model)
    # save train loss and metric
    state_file = os.path.join(output_dir, 'training_state.json')
    training_stats.SaveTrainingStates(state_file)
    # Shutdown data loading threads
    model.roi_data_loader.shutdown()
    return checkpoints
예제 #2
0
def main():
    # Initialize C2
    workspace.GlobalInit(
        ['caffe2', '--caffe2_log_level=0', '--caffe2_gpu_memory_tracking=1'])
    # Set up logging and load config options
    logger = setup_logging(__name__)
    logging.getLogger('detectron.roi_data.loader').setLevel(logging.INFO)
    args = parse_args()
    logger.info('Called with args:')
    logger.info(args)
    if args.cfg_file is not None:
        merge_cfg_from_file(args.cfg_file)
    if args.opts is not None:
        merge_cfg_from_list(args.opts)
    assert_and_infer_cfg()
    smi_output, cuda_ver, cudnn_ver = c2_utils.get_nvidia_info()
    logger.info("cuda version : {}".format(cuda_ver))
    logger.info("cudnn version: {}".format(cudnn_ver))
    logger.info("nvidia-smi output:\n{}".format(smi_output))
    logger.info('Training with config:')
    logger.info(pprint.pformat(cfg))
    # Note that while we set the numpy random seed network training will not be
    # deterministic in general. There are sources of non-determinism that cannot
    # be removed with a reasonble execution-speed tradeoff (such as certain
    # non-deterministic cudnn functions).
    np.random.seed(cfg.RNG_SEED)
    # test model
    logger.info("creat test model ...")
    test_model = test_engine.initialize_model_from_cfg(cfg.TEST.WEIGHTS,
                                                       gpu_id=0)
    logger.info("created test model ...")
    train_data = DataLoader(root,
                            "train_id.txt",
                            cfg,
                            test_model,
                            is_train=True)
    # creat mode
    model, weights_file, start_iter, checkpoints = create_model(
        True, cfg, output_dir)
    # test blob
    print(workspace.Blobs())
    # create input blob
    blob_names = ['data_stage2', 'gt_label_stage2']
    for gpu_id in range(cfg.NUM_GPUS):
        with c2_utils.NamedCudaScope(gpu_id):
            for blob_name in blob_names:
                workspace.CreateBlob(core.ScopedName(blob_name))
    # Override random weight initialization with weights from a saved model
    if weights_file:
        nu.initialize_gpu_from_weights_file(model, weights_file, gpu_id=0)
    # Even if we're randomly initializing we still need to synchronize
    # parameters across GPUs
    nu.broadcast_parameters(model)
    workspace.CreateNet(model.net)

    logger.info('Outputs saved to: {:s}'.format(os.path.abspath(output_dir)))
    dump_proto_files(model, output_dir)

    writer = SummaryWriter(log_dir=output_dir)
    training_stats = TrainingStats(model, writer)
    CHECKPOINT_PERIOD = int(cfg.TRAIN.SNAPSHOT_ITERS / cfg.NUM_GPUS)
    logger.info("start train ...")
    for cur_iter in range(start_iter, cfg.SOLVER.MAX_ITER):
        # feed data
        # print("{} iter starting feed data...".format(cur_iter))
        data_stage2, gt_label = train_data.next_batch()
        with c2_utils.NamedCudaScope(gpu_id):
            workspace.FeedBlob(core.ScopedName('data_stage2'), data_stage2)
            workspace.FeedBlob(core.ScopedName('gt_label_stage2'), gt_label)

        # print("workspace.RunNet(model.net.Proto().name)")
        training_stats.IterTic()
        lr = model.UpdateWorkspaceLr(cur_iter,
                                     lr_policy.get_lr_at_iter(cur_iter))
        workspace.RunNet(model.net.Proto().name)
        if cur_iter == start_iter:
            nu.print_net(model)
        training_stats.IterToc()
        training_stats.UpdateIterStats(cur_iter)
        training_stats.LogIterStats(cur_iter, lr)
        writer.add_scalar('learning_rate', lr, cur_iter)

        # print("end of RunNet")
        if (cur_iter + 1) % CHECKPOINT_PERIOD == 0 and cur_iter > start_iter:
            checkpoints[cur_iter] = os.path.join(
                output_dir, 'model_iter{}.pkl'.format(cur_iter))
            nu.save_model_to_weights_file(checkpoints[cur_iter], model)

        if cur_iter == start_iter + training_stats.LOG_PERIOD:
            # Reset the iteration timer to remove outliers from the first few
            # SGD iterations
            training_stats.ResetIterTimer()

        if np.isnan(training_stats.iter_total_loss):
            handle_critical_error(model, 'Loss is NaN')

    # Save the final model
    checkpoints['final'] = os.path.join(output_dir, 'model_final.pkl')
    nu.save_model_to_weights_file(checkpoints['final'], model)
    # save train loss and metric
    state_file = os.path.join(output_dir, 'training_state.json')
    training_stats.SaveTrainingStates(state_file)
    # Execute the training run
    checkpoints = detectron.utils.train.train_model()
    # Test the trained model
    if not args.skip_test:
        test_model(checkpoints['final'], args.multi_gpu_testing, args.opts)