예제 #1
0
    def test_mask_head_scriptability(self):
        input_shape = ShapeSpec(channels=1024)
        mask_features = torch.randn(4, 1024, 14, 14)

        image_shapes = [(10, 10), (15, 15)]
        pred_instance0 = Instances(image_shapes[0])
        pred_classes0 = torch.tensor([1, 2, 3], dtype=torch.int64)
        pred_instance0.pred_classes = pred_classes0
        pred_instance1 = Instances(image_shapes[1])
        pred_classes1 = torch.tensor([4], dtype=torch.int64)
        pred_instance1.pred_classes = pred_classes1

        mask_head = MaskRCNNConvUpsampleHead(
            input_shape, num_classes=80, conv_dims=[256, 256]
        ).eval()
        # pred_instance will be in-place changed during the inference
        # process of `MaskRCNNConvUpsampleHead`
        origin_outputs = mask_head(mask_features, deepcopy([pred_instance0, pred_instance1]))

        fields = {"pred_masks": torch.Tensor, "pred_classes": torch.Tensor}
        with freeze_training_mode(mask_head), patch_instances(fields) as NewInstances:
            sciript_mask_head = torch.jit.script(mask_head)
            pred_instance0 = NewInstances.from_instances(pred_instance0)
            pred_instance1 = NewInstances.from_instances(pred_instance1)
            script_outputs = sciript_mask_head(mask_features, [pred_instance0, pred_instance1])

        for origin_ins, script_ins in zip(origin_outputs, script_outputs):
            assert_instances_allclose(origin_ins, script_ins.to_instances(), rtol=0)
예제 #2
0
    def test_keypoint_head_scriptability(self):
        input_shape = ShapeSpec(channels=1024, height=14, width=14)
        keypoint_features = torch.randn(4, 1024, 14, 14)

        image_shapes = [(10, 10), (15, 15)]
        pred_boxes0 = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6], [1, 5, 2, 8]], dtype=torch.float32)
        pred_instance0 = Instances(image_shapes[0])
        pred_instance0.pred_boxes = Boxes(pred_boxes0)
        pred_boxes1 = torch.tensor([[7, 3, 10, 5]], dtype=torch.float32)
        pred_instance1 = Instances(image_shapes[1])
        pred_instance1.pred_boxes = Boxes(pred_boxes1)

        keypoint_head = KRCNNConvDeconvUpsampleHead(
            input_shape, num_keypoints=17, conv_dims=[512, 512]
        ).eval()
        origin_outputs = keypoint_head(
            keypoint_features, deepcopy([pred_instance0, pred_instance1])
        )

        fields = {
            "pred_boxes": Boxes,
            "pred_keypoints": torch.Tensor,
            "pred_keypoint_heatmaps": torch.Tensor,
        }
        with freeze_training_mode(keypoint_head), patch_instances(fields) as NewInstances:
            sciript_keypoint_head = torch.jit.script(keypoint_head)
            pred_instance0 = NewInstances.from_instances(pred_instance0)
            pred_instance1 = NewInstances.from_instances(pred_instance1)
            script_outputs = sciript_keypoint_head(
                keypoint_features, [pred_instance0, pred_instance1]
            )

        for origin_ins, script_ins in zip(origin_outputs, script_outputs):
            assert_instances_allclose(origin_ins, script_ins.to_instances(), rtol=0)
예제 #3
0
    def test_StandardROIHeads_scriptability(self):
        cfg = get_cfg()
        cfg.MODEL.ROI_BOX_HEAD.NAME = "FastRCNNConvFCHead"
        cfg.MODEL.ROI_BOX_HEAD.NUM_FC = 2
        cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE = "ROIAlignV2"
        cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10, 10, 5, 5)
        cfg.MODEL.MASK_ON = True
        cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST = 0.01
        cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.01
        num_images = 2
        images_tensor = torch.rand(num_images, 20, 30)
        image_sizes = [(10, 10), (20, 30)]
        images = ImageList(images_tensor, image_sizes)
        num_channels = 1024
        features = {"res4": torch.rand(num_images, num_channels, 1, 2)}
        feature_shape = {"res4": ShapeSpec(channels=num_channels, stride=16)}

        roi_heads = StandardROIHeads(cfg, feature_shape).eval()

        proposal0 = Instances(image_sizes[0])
        proposal_boxes0 = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]],
                                       dtype=torch.float32)
        proposal0.proposal_boxes = Boxes(proposal_boxes0)
        proposal0.objectness_logits = torch.tensor([0.5, 0.7],
                                                   dtype=torch.float32)

        proposal1 = Instances(image_sizes[1])
        proposal_boxes1 = torch.tensor([[1, 5, 2, 8], [7, 3, 10, 5]],
                                       dtype=torch.float32)
        proposal1.proposal_boxes = Boxes(proposal_boxes1)
        proposal1.objectness_logits = torch.tensor([0.1, 0.9],
                                                   dtype=torch.float32)
        proposals = [proposal0, proposal1]

        pred_instances, _ = roi_heads(images, features, proposals)
        fields = {
            "objectness_logits": torch.Tensor,
            "proposal_boxes": Boxes,
            "pred_classes": torch.Tensor,
            "scores": torch.Tensor,
            "pred_masks": torch.Tensor,
            "pred_boxes": Boxes,
            "pred_keypoints": torch.Tensor,
            "pred_keypoint_heatmaps": torch.Tensor,
        }
        with freeze_training_mode(roi_heads), patch_instances(
                fields) as new_instances:
            proposal0 = new_instances.from_instances(proposal0)
            proposal1 = new_instances.from_instances(proposal1)
            proposals = [proposal0, proposal1]
            scripted_rot_heads = torch.jit.script(roi_heads)
            scripted_pred_instances, _ = scripted_rot_heads(
                images, features, proposals)

        for instance, scripted_instance in zip(pred_instances,
                                               scripted_pred_instances):
            assert_instances_allclose(instance,
                                      scripted_instance.to_instances(),
                                      rtol=0)