def make_grid_accesses(node, yk_grid_objs): """ Construct a new Iteration/Expression based on ``node``, in which all :class:`types.Indexed` accesses have been converted into YASK grid accesses. """ def make_grid_gets(expr): mapper = {} indexeds = retrieve_indexed(expr) data_carriers = [i for i in indexeds if i.base.function.from_YASK] for i in data_carriers: args = [ ListInitializer([INT(make_grid_gets(j)) for j in i.indices]) ] mapper[i] = make_sharedptr_funcall( namespace['code-grid-get'], args, yk_grid_objs[i.base.function.name]) return expr.xreplace(mapper) mapper = {} for i, e in enumerate(FindNodes(Expression).visit(node)): if e.is_ForeignExpression: continue lhs, rhs = e.expr.args # RHS translation rhs = make_grid_gets(rhs) # LHS translation if e.write.from_YASK: args = [rhs] args += [ ListInitializer([INT(make_grid_gets(i)) for i in lhs.indices]) ] call = namespace['code-grid-add' if e. is_Increment else 'code-grid-put'] handle = make_sharedptr_funcall(call, args, yk_grid_objs[e.write.name]) processed = ForeignExpression(handle, e.dtype, is_Increment=e.is_Increment) else: # Writing to a scalar temporary processed = e._rebuild(expr=e.expr.func(lhs, rhs)) mapper.update({e: processed}) return Transformer(mapper).visit(node)
def _specialize_iet(self, iet, **kwargs): """ Transform the Iteration/Expression tree to offload the computation of one or more loop nests onto YASK. This involves calling the YASK compiler to generate YASK code. Such YASK code is then called from within the transformed Iteration/Expression tree. """ mapper = {} self.yk_solns = OrderedDict() for n, (section, trees) in enumerate(find_affine_trees(iet).items()): dimensions = tuple( filter_ordered(i.dim.root for i in flatten(trees))) context = contexts.fetch(dimensions, self._dtype) # A unique name for the 'real' compiler and kernel solutions name = namespace['jit-soln'](Signer._digest( configuration, *[i.root for i in trees])) # Create a YASK compiler solution for this Operator yc_soln = context.make_yc_solution(name) try: # Generate YASK grids and populate `yc_soln` with equations local_grids = yaskit(trees, yc_soln) # Build the new IET nodes yk_soln_obj = YaskSolnObject(namespace['code-soln-name'](n)) funcall = make_sharedptr_funcall(namespace['code-soln-run'], ['time'], yk_soln_obj) funcall = ForeignExpression(funcall, self._dtype) mapper[trees[0].root] = funcall mapper.update({i.root: mapper.get(i.root) for i in trees}) # Drop trees # Mark `funcall` as an external function call self._func_table[namespace['code-soln-run']] = MetaCall( None, False) # JIT-compile the newly-created YASK kernel yk_soln = context.make_yk_solution(name, yc_soln, local_grids) self.yk_solns[(dimensions, yk_soln_obj)] = yk_soln # Print some useful information about the newly constructed solution log("Solution '%s' contains %d grid(s) and %d equation(s)." % (yc_soln.get_name(), yc_soln.get_num_grids(), yc_soln.get_num_equations())) except NotImplementedError as e: log("Unable to offload a candidate tree. Reason: [%s]" % str(e)) iet = Transformer(mapper).visit(iet) if not self.yk_solns: log("No offloadable trees found") # Some Iteration/Expression trees are not offloaded to YASK and may # require further processing to be executed in YASK, due to the differences # in storage layout employed by Devito and YASK yk_grid_objs = { i.name: YaskGridObject(i.name) for i in self._input if i.from_YASK } yk_grid_objs.update({i: YaskGridObject(i) for i in self._local_grids}) iet = make_grid_accesses(iet, yk_grid_objs) # Finally optimize all non-yaskized loops iet = super(OperatorYASK, self)._specialize_iet(iet, **kwargs) return iet