예제 #1
0
파일: equation.py 프로젝트: ponykid/SNIST
    def __new__(cls, *args, **kwargs):
        if len(args) == 1 and isinstance(args[0], LoweredEq):
            # origin: LoweredEq(devito.LoweredEq, **kwargs)
            input_expr = args[0]
            expr = Eq.__new__(cls, *input_expr.args, evaluate=False)
            for i in cls._state:
                setattr(expr, '_%s' % i, kwargs.get(i) or getattr(input_expr, i))
            return expr
        elif len(args) == 1 and isinstance(args[0], Eq):
            # origin: LoweredEq(sympy.Eq)
            input_expr = expr = args[0]
        elif len(args) == 2:
            expr = Eq.__new__(cls, *args, evaluate=False)
            for i in cls._state:
                setattr(expr, '_%s' % i, kwargs.pop(i))
            return expr
        else:
            raise ValueError("Cannot construct LoweredEq from args=%s "
                             "and kwargs=%s" % (str(args), str(kwargs)))

        # Well-defined dimension ordering
        ordering = dimension_sort(expr)

        # Analyze the expression
        mapper = detect_accesses(expr)
        oobs = detect_oobs(mapper)
        conditionals = [i for i in ordering if i.is_Conditional]

        # The iteration space is constructed so that information always flows
        # from an iteration to another (i.e., no anti-dependences are created)
        directions, _ = force_directions(detect_flow_directions(expr), lambda i: Any)
        iterators = build_iterators(mapper)
        intervals = build_intervals(Stencil.union(*mapper.values()))
        intervals = IntervalGroup(intervals, relations=ordering.relations)
        ispace = IterationSpace(intervals.zero(), iterators, directions)

        # The data space is relative to the computational domain. Note that we
        # are deliberately dropping the intervals ordering (by turning `intervals`
        # into a list), as this is irrelevant (even more: dangerous) for data spaces
        intervals = [i if i.dim in oobs else i.zero() for i in intervals]
        intervals += [Interval(i, 0, 0) for i in ordering
                      if i not in ispace.dimensions + conditionals]
        parts = {k: IntervalGroup(build_intervals(v)) for k, v in mapper.items() if k}
        dspace = DataSpace(intervals, parts)

        # Finally create the LoweredEq with all metadata attached
        expr = super(LoweredEq, cls).__new__(cls, expr.lhs, expr.rhs, evaluate=False)
        expr._is_Increment = getattr(input_expr, 'is_Increment', False)
        expr._dspace = dspace
        expr._ispace = ispace
        expr._conditionals = tuple(conditionals)
        expr._reads, expr._writes = detect_io(expr)

        return expr
예제 #2
0
    def callback(self, clusters, prefix):
        if not prefix:
            return clusters

        d = prefix[-1].dim

        processed = []
        for c in clusters:
            if SKEWABLE not in c.properties[d]:
                return clusters

            skew_dims = {
                i.dim
                for i in c.ispace if SEQUENTIAL in c.properties[i.dim]
            }
            if len(skew_dims) > 1:
                return clusters
            skew_dim = skew_dims.pop()

            # Since we are here, prefix is skewable and nested under a SEQUENTIAL loop
            intervals = []
            for i in c.ispace:
                if i.dim is d and (not d.is_Block or d._depth == 1):
                    intervals.append(Interval(d, skew_dim, skew_dim))
                else:
                    intervals.append(i)
            intervals = IntervalGroup(intervals, relations=c.ispace.relations)
            ispace = IterationSpace(intervals, c.ispace.sub_iterators,
                                    c.ispace.directions)

            exprs = xreplace_indices(c.exprs, {d: d - skew_dim})
            processed.append(c.rebuild(exprs=exprs, ispace=ispace))

        return processed
예제 #3
0
def decompose(ispace, d, block_dims):
    """
    Create a new IterationSpace in which the `d` Interval is decomposed
    into a hierarchy of Intervals over ``block_dims``.
    """
    # Create the new Intervals
    intervals = []
    for i in ispace:
        if i.dim is d:
            intervals.append(i.switch(block_dims[0]))
            intervals.extend([i.switch(bd).zero() for bd in block_dims[1:]])
        else:
            intervals.append(i)

    # Create the relations.
    # Example: consider the relation `(t, x, y)` and assume we decompose `x` over
    # `xbb, xb, xi`; then we decompose the relation as two relations, `(t, xbb, y)`
    # and `(xbb, xb, xi)`
    relations = [block_dims]
    for r in ispace.intervals.relations:
        relations.append([block_dims[0] if i is d else i for i in r])

    # The level of a given Dimension in the hierarchy of block Dimensions
    level = lambda dim: len([i for i in dim._defines if i.is_Incr])

    # Add more relations
    for n, i in enumerate(ispace):
        if i.dim is d:
            continue
        elif i.dim.is_Incr:
            # Make sure IncrDimensions on the same level stick next to each other.
            # For example, we want `(t, xbb, ybb, xb, yb, x, y)`, rather than say
            # `(t, xbb, xb, x, ybb, ...)`
            for bd in block_dims:
                if level(i.dim) >= level(bd):
                    relations.append([bd, i.dim])
                else:
                    relations.append([i.dim, bd])
        elif n > ispace.intervals.index(d):
            # The non-Incr subsequent Dimensions must follow the block Dimensions
            for bd in block_dims:
                relations.append([bd, i.dim])
        else:
            # All other Dimensions must precede the block Dimensions
            for bd in block_dims:
                relations.append([i.dim, bd])

    intervals = IntervalGroup(intervals, relations=relations)

    sub_iterators = dict(ispace.sub_iterators)
    sub_iterators.pop(d, None)
    sub_iterators.update({bd: ispace.sub_iterators.get(d, []) for bd in block_dims})

    directions = dict(ispace.directions)
    directions.pop(d)
    directions.update({bd: ispace.directions[d] for bd in block_dims})

    return IterationSpace(intervals, sub_iterators, directions)
예제 #4
0
def decompose(ispace, d, block_dims):
    """
    Create a new IterationSpace in which the `d` Interval is decomposed
    into a hierarchy of Intervals over ``block_dims``.
    """
    # Create the new Intervals
    intervals = []
    for i in ispace:
        if i.dim is d:
            intervals.append(i.switch(block_dims[0]))
            intervals.extend([i.switch(bd).zero() for bd in block_dims[1:]])
        else:
            intervals.append(i)

    # Create the intervals relations
    # 1: `bbd > bd > d`
    relations = [tuple(block_dims)]

    # 2: Suitably replace `d` with all `bd`'s
    for r in ispace.relations:
        if d not in r:
            relations.append(r)
            continue

        for bd in block_dims:
            # Avoid e.g. `x > yb`
            if any(i._depth < bd._depth for i in r if i.is_Block):
                continue

            relations.append(tuple(bd if i is d else i for i in r))

    # 3: Make sure BlockDimensions at same depth stick next to each other
    # E.g., `(t, xbb, ybb, xb, yb, x, y)`, and NOT e.g. `(t, xbb, xb, x, ybb, ...)`
    # NOTE: this is perfectly legal since:
    # TILABLE => (perfect nest & PARALLEL) => interchangeable
    for i in ispace.itdimensions:
        if not i.is_Block:
            continue
        for bd in block_dims:
            if i._depth < bd._depth:
                relations.append((i, bd))

    intervals = IntervalGroup(intervals, relations=relations)

    sub_iterators = dict(ispace.sub_iterators)
    sub_iterators.pop(d, None)
    sub_iterators.update({bd: () for bd in block_dims[:-1]})
    sub_iterators.update({block_dims[-1]: ispace.sub_iterators[d]})

    directions = dict(ispace.directions)
    directions.pop(d)
    directions.update({bd: ispace.directions[d] for bd in block_dims})

    return IterationSpace(intervals, sub_iterators, directions)
예제 #5
0
def decompose(ispace, d, block_dims):
    """
    Create a new IterationSpace in which the `d` Interval is decomposed
    into a hierarchy of Intervals over ``block_dims``.
    """
    # Create the new Intervals
    intervals = []
    for i in ispace.intervals:
        if i.dim is d:
            intervals.append(i.switch(block_dims[0]))
            intervals.extend([i.switch(bd).zero() for bd in block_dims[1:]])
        else:
            intervals.append(i)

    # Create the new "decomposed" relations.
    # Example: consider the relation `(t, x, y)` and assume we decompose `x` over
    # `xbb, xb, xi`; then we decompose the relation as two relations, `(t, xbb, y)`
    # and `(xbb, xb, xi)`
    relations = [block_dims]
    for r in ispace.intervals.relations:
        relations.append([block_dims[0] if i is d else i for i in r])

    # Further, if there are other IncrDimensions, add relations such that
    # IncrDimensions at the same level stick together, thus we obtain for
    # example `(t, xbb, ybb, xb, yb, x, y)` instead of `(t, xbb, xb, x, ybb, ...)`
    for i in intervals:
        if not isinstance(i.dim, IncrDimension):
            continue
        for bd in block_dims:
            if bd._defines & i.dim._defines:
                break
            if len(i.dim._defines) > len(bd._defines):
                relations.append([bd, i.dim])

    intervals = IntervalGroup(intervals, relations=relations)

    sub_iterators = dict(ispace.sub_iterators)
    sub_iterators.pop(d, None)
    sub_iterators.update(
        {bd: ispace.sub_iterators.get(d, [])
         for bd in block_dims})

    directions = dict(ispace.directions)
    directions.pop(d)
    directions.update({bd: ispace.directions[d] for bd in block_dims})

    return IterationSpace(intervals, sub_iterators, directions)
예제 #6
0
    def callback(self, clusters, prefix):
        if not prefix:
            return clusters

        d = prefix[-1].dim

        processed = []
        for c in clusters:
            if SKEWABLE not in c.properties[d]:
                return clusters

            if d is c.ispace[-1].dim and not self.skewinner:
                return clusters

            skew_dims = {i.dim for i in c.ispace if SEQUENTIAL in c.properties[i.dim]}
            if len(skew_dims) > 1:
                return clusters
            skew_dim = skew_dims.pop()

            # The level of a given Dimension in the hierarchy of block Dimensions, used
            # to skew over the outer level of loops.
            level = lambda dim: len([i for i in dim._defines if i.is_Incr])

            # Since we are here, prefix is skewable and nested under a
            # SEQUENTIAL loop.
            intervals = []
            for i in c.ispace:
                if i.dim is d and level(d) <= 1:  # Skew only at level 0 or 1
                    intervals.append(Interval(d, skew_dim, skew_dim))
                else:
                    intervals.append(i)
            intervals = IntervalGroup(intervals, relations=c.ispace.relations)
            ispace = IterationSpace(intervals, c.ispace.sub_iterators,
                                    c.ispace.directions)

            exprs = xreplace_indices(c.exprs, {d: d - skew_dim})
            processed.append(c.rebuild(exprs=exprs, ispace=ispace,
                                       properties=c.properties))

        return processed
예제 #7
0
    def __new__(cls, *args, **kwargs):
        if len(args) == 1 and isinstance(args[0], LoweredEq):
            # origin: LoweredEq(devito.LoweredEq, **kwargs)
            input_expr = args[0]
            expr = sympy.Eq.__new__(cls, *input_expr.args, evaluate=False)
            for i in cls._state:
                setattr(expr, '_%s' % i,
                        kwargs.get(i) or getattr(input_expr, i))
            return expr
        elif len(args) == 1 and isinstance(args[0], Eq):
            # origin: LoweredEq(devito.Eq)
            input_expr = expr = args[0]
        elif len(args) == 2:
            expr = sympy.Eq.__new__(cls, *args, evaluate=False)
            for i in cls._state:
                setattr(expr, '_%s' % i, kwargs.pop(i))
            return expr
        else:
            raise ValueError("Cannot construct LoweredEq from args=%s "
                             "and kwargs=%s" % (str(args), str(kwargs)))

        # Well-defined dimension ordering
        ordering = dimension_sort(expr)

        # Analyze the expression
        mapper = detect_accesses(expr)
        oobs = detect_oobs(mapper)
        conditionals = [i for i in ordering if i.is_Conditional]

        # Construct Intervals for IterationSpace and DataSpace
        intervals = build_intervals(Stencil.union(*mapper.values()))
        iintervals = []  # iteration Intervals
        dintervals = []  # data Intervals
        for i in intervals:
            d = i.dim
            if d in oobs:
                iintervals.append(i.zero())
                dintervals.append(i)
            else:
                iintervals.append(i.zero())
                dintervals.append(i.zero())

        # Construct the IterationSpace
        iintervals = IntervalGroup(iintervals, relations=ordering.relations)
        iterators = build_iterators(mapper)
        ispace = IterationSpace(iintervals, iterators)

        # Construct the DataSpace
        dintervals.extend([
            Interval(i, 0, 0) for i in ordering
            if i not in ispace.dimensions + conditionals
        ])
        parts = {
            k: IntervalGroup(build_intervals(v)).add(iintervals)
            for k, v in mapper.items() if k
        }
        dspace = DataSpace(dintervals, parts)

        # Lower all Differentiable operations into SymPy operations
        rhs = diff2sympy(expr.rhs)

        # Finally create the LoweredEq with all metadata attached
        expr = super(LoweredEq, cls).__new__(cls,
                                             expr.lhs,
                                             rhs,
                                             evaluate=False)

        expr._dspace = dspace
        expr._ispace = ispace
        expr._conditionals = tuple(conditionals)
        expr._reads, expr._writes = detect_io(expr)

        expr._is_Increment = input_expr.is_Increment
        expr._implicit_dims = input_expr.implicit_dims

        return expr
예제 #8
0
    def __new__(cls, *args, **kwargs):
        if len(args) == 1:
            # origin: LoweredEq(expr)
            expr = input_expr = args[0]
            assert not isinstance(expr, LoweredEq) and isinstance(expr, Eq)
        elif len(args) == 2:
            # origin: LoweredEq(lhs, rhs, stamp=...)
            stamp = kwargs.pop('stamp')
            expr = Eq.__new__(cls, *args, evaluate=False)
            assert isinstance(stamp, Eq)
            expr.is_Increment = stamp.is_Increment
            expr._ispace, expr._dspace = stamp.ispace, stamp.dspace
            expr.reads, expr.writes = stamp.reads, stamp.writes
            return expr
        elif len(args) == 5:
            # origin: LoweredEq(expr, ispace, space)
            input_expr, ispace, dspace, reads, writes = args
            assert isinstance(ispace, IterationSpace) and isinstance(
                dspace, DataSpace)
            expr = Eq.__new__(cls, *input_expr.args, evaluate=False)
            expr.is_Increment = input_expr.is_Increment
            expr._ispace, expr._dspace = ispace, dspace
            expr.reads, expr.writes = reads, writes
            return expr
        else:
            raise ValueError("Cannot construct LoweredEq from args=%s "
                             "and kwargs=%s" % (str(args), str(kwargs)))

        # Well-defined dimension ordering
        ordering = dimension_sort(expr, key=lambda i: not i.is_Time)

        # Introduce space sub-dimensions if need to
        region = getattr(input_expr, '_region', DOMAIN)
        if region == INTERIOR:
            mapper = {
                i: SubDimension("%si" % i, i, 1, -1)
                for i in ordering if i.is_Space
            }
            expr = expr.xreplace(mapper)
            ordering = [mapper.get(i, i) for i in ordering]

        # Analyze data accesses
        mapper = detect_accesses(expr)
        oobs = detect_oobs(mapper)

        # The iteration space is constructed so that information always flows
        # from an iteration to another (i.e., no anti-dependences are created)
        directions, _ = force_directions(detect_flow_directions(expr),
                                         lambda i: Any)
        intervals, iterators = build_intervals(mapper)
        intervals = sorted(intervals, key=lambda i: ordering.index(i.dim))
        ispace = IterationSpace([i.zero() for i in intervals], iterators,
                                directions)

        # The data space is relative to the computational domain
        intervals = [i if i.dim in oobs else i.zero() for i in intervals]
        intervals += [
            Interval(i, 0, 0) for i in ordering if i not in ispace.dimensions
        ]
        parts = {
            k:
            IntervalGroup(Interval(i, min(j), max(j)) for i, j in v.items())
            for k, v in mapper.items()
        }
        dspace = DataSpace(intervals, parts)

        # Finally create the LoweredEq with all metadata attached
        expr = super(LoweredEq, cls).__new__(cls,
                                             expr.lhs,
                                             expr.rhs,
                                             evaluate=False)
        expr.is_Increment = getattr(input_expr, 'is_Increment', False)
        expr._dspace = dspace
        expr._ispace = ispace
        expr.reads, expr.writes = detect_io(expr)

        return expr
예제 #9
0
    def __new__(cls, *args, **kwargs):
        if len(args) == 1 and isinstance(args[0], LoweredEq):
            # origin: LoweredEq(devito.LoweredEq, **kwargs)
            input_expr = args[0]
            expr = sympy.Eq.__new__(cls, *input_expr.args, evaluate=False)
            for i in cls._state:
                setattr(expr, '_%s' % i,
                        kwargs.get(i) or getattr(input_expr, i))
            return expr
        elif len(args) == 1 and isinstance(args[0], Eq):
            # origin: LoweredEq(devito.Eq)
            input_expr = expr = args[0]
        elif len(args) == 2:
            expr = sympy.Eq.__new__(cls, *args, evaluate=False)
            for i in cls._state:
                setattr(expr, '_%s' % i, kwargs.pop(i))
            return expr
        else:
            raise ValueError("Cannot construct LoweredEq from args=%s "
                             "and kwargs=%s" % (str(args), str(kwargs)))

        # Well-defined dimension ordering
        ordering = dimension_sort(expr)

        # Analyze the expression
        accesses = detect_accesses(expr)
        dimensions = Stencil.union(*accesses.values())

        # Separate out the SubIterators from the main iteration Dimensions, that
        # is those which define an actual iteration space
        iterators = {}
        for d in dimensions:
            if d.is_SubIterator:
                iterators.setdefault(d.root, set()).add(d)
            elif d.is_Conditional:
                # Use `parent`, and `root`, because a ConditionalDimension may
                # have a SubDimension as parent
                iterators.setdefault(d.parent, set())
            else:
                iterators.setdefault(d, set())

        # Construct the IterationSpace
        intervals = IntervalGroup([Interval(d, 0, 0) for d in iterators],
                                  relations=ordering.relations)
        ispace = IterationSpace(intervals, iterators)

        # Construct the conditionals and replace the ConditionalDimensions in `expr`
        conditionals = {}
        for d in ordering:
            if not d.is_Conditional:
                continue
            if d.condition is None:
                conditionals[d] = GuardFactor(d)
            else:
                conditionals[d] = diff2sympy(lower_exprs(d.condition))
            if d.factor is not None:
                expr = uxreplace(expr, {d: IntDiv(d.index, d.factor)})
        conditionals = frozendict(conditionals)

        # Lower all Differentiable operations into SymPy operations
        rhs = diff2sympy(expr.rhs)

        # Finally create the LoweredEq with all metadata attached
        expr = super(LoweredEq, cls).__new__(cls,
                                             expr.lhs,
                                             rhs,
                                             evaluate=False)

        expr._ispace = ispace
        expr._conditionals = conditionals
        expr._reads, expr._writes = detect_io(expr)

        expr._is_Increment = input_expr.is_Increment
        expr._implicit_dims = input_expr.implicit_dims

        return expr
예제 #10
0
파일: cluster.py 프로젝트: speglich/devito
    def dspace(self):
        """
        Derive the DataSpace of the Cluster from its expressions, IterationSpace,
        and Guards.
        """
        accesses = detect_accesses(self.exprs)

        # Construct the `parts` of the DataSpace, that is a projection of the data
        # space for each Function appearing in `self.exprs`
        parts = {}
        for f, v in accesses.items():
            if f is None:
                continue

            intervals = [
                Interval(d, min(offs), max(offs)) for d, offs in v.items()
            ]
            intervals = IntervalGroup(intervals)

            # Factor in the IterationSpace -- if the min/max points aren't zero,
            # then the data intervals need to shrink/expand accordingly
            intervals = intervals.promote(lambda d: d.is_Block)
            shift = self.ispace.intervals.promote(lambda d: d.is_Block)
            intervals = intervals.add(shift)

            # Map SubIterators to the corresponding data space Dimension
            # E.g., `xs -> x -> x0_blk0 -> x` or `t0 -> t -> time`
            intervals = intervals.promote(lambda d: d.is_SubIterator)

            # If the bound of a Dimension is explicitly guarded, then we should
            # shrink the `parts` accordingly
            for d, v in self.guards.items():
                ret = v.find(BaseGuardBoundNext)
                assert len(ret) <= 1
                if len(ret) != 1:
                    continue
                if ret.pop().direction is Forward:
                    intervals = intervals.translate(d, v1=-1)
                else:
                    intervals = intervals.translate(d, 1)

            # Special case: if the factor of a ConditionalDimension has value 1,
            # then we can safely resort to the parent's Interval
            intervals = intervals.promote(
                lambda d: d.is_Conditional and d.factor == 1)

            parts[f] = intervals

        # Determine the Dimensions requiring shifted min/max points to avoid
        # OOB accesses
        oobs = set()
        for f, v in parts.items():
            for i in v:
                if i.dim.is_Sub:
                    d = i.dim.parent
                else:
                    d = i.dim
                try:
                    if i.lower < 0 or \
                       i.upper > f._size_nodomain[d].left + f._size_halo[d].right:
                        # It'd mean trying to access a point before the
                        # left halo (test0) or after the right halo (test1)
                        oobs.update(d._defines)
                except (KeyError, TypeError):
                    # Unable to detect presence of OOB accesses (e.g., `d` not in
                    # `f._size_halo`, that is typical of indirect accesses `A[B[i]]`)
                    pass

        # Construct the `intervals` of the DataSpace, that is a global,
        # Dimension-centric view of the data space
        intervals = IntervalGroup.generate('union', *parts.values())
        # E.g., `db0 -> time`, but `xi NOT-> x`
        intervals = intervals.promote(lambda d: not d.is_Sub)
        intervals = intervals.zero(set(intervals.dimensions) - oobs)

        return DataSpace(intervals, parts)
예제 #11
0
    def __new__(cls, *args, **kwargs):
        if len(args) == 1 and isinstance(args[0], LoweredEq):
            # origin: LoweredEq(devito.LoweredEq, **kwargs)
            input_expr = args[0]
            expr = Eq.__new__(cls, *input_expr.args, evaluate=False)
            for i in cls._state:
                setattr(expr, '_%s' % i,
                        kwargs.get(i) or getattr(input_expr, i))
            return expr
        elif len(args) == 1 and isinstance(args[0], Eq):
            # origin: LoweredEq(sympy.Eq)
            input_expr = expr = args[0]
        elif len(args) == 2:
            expr = Eq.__new__(cls, *args, evaluate=False)
            for i in cls._state:
                setattr(expr, '_%s' % i, kwargs.pop(i))
            return expr
        else:
            raise ValueError("Cannot construct LoweredEq from args=%s "
                             "and kwargs=%s" % (str(args), str(kwargs)))

        # Well-defined dimension ordering
        ordering = dimension_sort(expr, key=lambda i: not i.is_Time)

        # Introduce space sub-dimensions if need to
        region = getattr(input_expr, '_region', DOMAIN)
        if region == INTERIOR:
            mapper = {
                i: SubDimension.middle("%si" % i, i, 1, 1)
                for i in ordering if i.is_Space
            }
            expr = expr.xreplace(mapper)
            for k, v in mapper.items():
                ordering.insert(ordering.index(k) + 1, v)

        # Analyze the expression
        mapper = detect_accesses(expr)
        oobs = detect_oobs(mapper)

        # The iteration space is constructed so that information always flows
        # from an iteration to another (i.e., no anti-dependences are created)
        directions, _ = force_directions(detect_flow_directions(expr),
                                         lambda i: Any)
        iterators = build_iterators(mapper)
        intervals = build_intervals(Stencil.union(*mapper.values()))
        intervals = sorted(intervals, key=lambda i: ordering.index(i.dim))
        ispace = IterationSpace([i.zero() for i in intervals], iterators,
                                directions)

        # The data space is relative to the computational domain
        intervals = [i if i.dim in oobs else i.zero() for i in intervals]
        intervals += [
            Interval(i, 0, 0) for i in ordering if i not in ispace.dimensions
        ]
        parts = {
            k: IntervalGroup(build_intervals(v))
            for k, v in mapper.items() if k
        }
        dspace = DataSpace(intervals, parts)

        # Finally create the LoweredEq with all metadata attached
        expr = super(LoweredEq, cls).__new__(cls,
                                             expr.lhs,
                                             expr.rhs,
                                             evaluate=False)
        expr._is_Increment = getattr(input_expr, 'is_Increment', False)
        expr._dspace = dspace
        expr._ispace = ispace
        expr._reads, expr._writes = detect_io(expr)

        return expr