예제 #1
0
def smooth(f, g, axis=None):
    """
    Smooth a Function through simple moving average.

    Parameters
    ----------
    f : Function
        The left-hand side of the smoothing kernel, that is the smoothed Function.
    g : Function
        The right-hand side of the smoothing kernel, that is the Function being smoothed.
    axis : Dimension or list of Dimensions, optional
        The Dimension along which the smoothing operation is performed. Defaults
        to ``f``'s innermost Dimension.

    Notes
    -----
    More info about simple moving average available at: ::

        https://en.wikipedia.org/wiki/Moving_average#Simple_moving_average
    """
    if g.is_Constant:
        # Return a scaled version of the input if it's a Constant
        f.data[:] = .9 * g.data
    else:
        if axis is None:
            axis = g.dimensions[-1]
        dv.Operator(dv.Eq(f, g.avg(dims=axis)), name='smoother')()
예제 #2
0
def norm(f, order=2):
    """
    Compute the norm of a Function.

    Parameters
    ----------
    f : Function
        Input Function.
    order : int, optional
        The order of the norm. Defaults to 2.
    """
    kwargs = {}
    if f.is_TimeFunction and f._time_buffering:
        kwargs[f.time_dim.max_name] = f._time_size - 1

    # Protect SparseFunctions from accessing duplicated (out-of-domain) data,
    # otherwise we would eventually be summing more than expected
    p, eqns = f.guard() if f.is_SparseFunction else (f, [])

    with MPIReduction(f) as mr:
        op = dv.Operator(eqns + [dv.Inc(mr.n[0], Abs(Pow(p, order)))],
                         name='norm%d' % order)
        op.apply(**kwargs)

    v = Pow(mr.v, 1 / order)

    return np.float(v)
예제 #3
0
def sumall(f):
    """
    Compute the sum of all Function data.

    Parameters
    ----------
    f : Function
        Input Function.
    """
    kwargs = {}
    if f.is_TimeFunction and f._time_buffering:
        kwargs[f.time_dim.max_name] = f._time_size - 1

    # Protect SparseFunctions from accessing duplicated (out-of-domain) data,
    # otherwise we would eventually be summing more than expected
    p, eqns = f.guard() if f.is_SparseFunction else (f, [])

    s = dv.types.Scalar(name='sum', dtype=f.dtype)

    with MPIReduction(f) as mr:
        op = dv.Operator([dv.Eq(s, 0.0)] + eqns +
                         [dv.Inc(s, p), dv.Eq(mr.n[0], s)],
                         name='sum')
        op.apply(**kwargs)

    return f.dtype(mr.v)
예제 #4
0
def first_touch(array):
    """Uses the Propagator low-level API to initialize the given array(in Devito types)
    in the same pattern that would later be used to access it.
    """
    exp_init = [Eq(array.indexed[array.indices], 0)]
    op = devito.Operator(exp_init)
    op.apply()
예제 #5
0
def assign(f, rhs=0, options=None, name='assign', **kwargs):
    """
    Assign a list of RHSs to a list of Functions.

    Parameters
    ----------
    f : Function or list of Functions
        The left-hand side of the assignment.
    rhs : expr-like or list of expr-like, optional
        The right-hand side of the assignment.
    options : dict or list of dict, optional
        Dictionary or list (of len(f)) of dictionaries containing optional arguments to
        be passed to Eq.
    name : str, optional
        Name of the operator.

    Examples
    --------
    >>> from devito import Grid, Function, assign
    >>> grid = Grid(shape=(4, 4))
    >>> f = Function(name='f', grid=grid, dtype=np.int32)
    >>> g = Function(name='g', grid=grid, dtype=np.int32)
    >>> h = Function(name='h', grid=grid, dtype=np.int32)
    >>> functions = [f, g, h]
    >>> scalars = [1, 2, 3]
    >>> assign(functions, scalars)
    >>> f.data
    Data([[1, 1, 1, 1],
          [1, 1, 1, 1],
          [1, 1, 1, 1],
          [1, 1, 1, 1]], dtype=int32)
    >>> g.data
    Data([[2, 2, 2, 2],
          [2, 2, 2, 2],
          [2, 2, 2, 2],
          [2, 2, 2, 2]], dtype=int32)
    >>> h.data
    Data([[3, 3, 3, 3],
          [3, 3, 3, 3],
          [3, 3, 3, 3],
          [3, 3, 3, 3]], dtype=int32)
    """
    if not isinstance(rhs, list):
        rhs = len(as_list(f)) * [
            rhs,
        ]
    eqs = []
    if options:
        for i, j, k in zip(as_list(f), rhs, options):
            if k is not None:
                eqs.append(dv.Eq(i, j, **k))
            else:
                eqs.append(dv.Eq(i, j))
    else:
        for i, j in zip(as_list(f), rhs):
            eqs.append(dv.Eq(i, j))
    dv.Operator(eqs, name=name, **kwargs)()
예제 #6
0
def assign(f, v=0):
    """
    Assign a value to a Function.

    Parameters
    ----------
    f : Function
        The left-hand side of the assignment.
    v : scalar, optional
        The right-hand side of the assignment.
    """
    dv.Operator(dv.Eq(f, v), name='assign')()
예제 #7
0
def inner(f, g):
    """
    Inner product of two Functions.

    Parameters
    ----------
    f : Function
        First input operand
    g : Function
        Second input operand

    Raises
    ------
    ValueError
        If the two input Functions are defined over different grids, or have
        different dimensionality, or their dimension-wise sizes don't match.
        If in input are two SparseFunctions and their coordinates don't match,
        the exception is raised.

    Notes
    -----
    The inner product is the sum of all dimension-wise products. For 1D Functions,
    the inner product corresponds to the dot product.
    """
    # Input check
    if f.is_TimeFunction and f._time_buffering != g._time_buffering:
        raise ValueError(
            "Cannot compute `inner` between save/nosave TimeFunctions")
    if f.shape != g.shape:
        raise ValueError("`f` and `g` must have same shape")
    if f._data is None or g._data is None:
        raise ValueError("Uninitialized input")
    if f.is_SparseFunction and not np.all(
            f.coordinates_data == g.coordinates_data):
        raise ValueError("Non-matching coordinates")

    kwargs = {}
    if f.is_TimeFunction and f._time_buffering:
        kwargs[f.time_dim.max_name] = f._time_size - 1

    # Protect SparseFunctions from accessing duplicated (out-of-domain) data,
    # otherwise we would eventually be summing more than expected
    rhs, eqns = f.guard(f * g) if f.is_SparseFunction else (f * g, [])

    s = dv.types.Scalar(name='sum', dtype=f.dtype)

    with MPIReduction(f, g) as mr:
        op = dv.Operator([dv.Eq(s, 0.0)] + eqns +
                         [dv.Inc(s, rhs), dv.Eq(mr.n[0], s)],
                         name='inner')
        op.apply(**kwargs)

    return f.dtype(mr.v)
예제 #8
0
파일: builtins.py 프로젝트: ponykid/SNIST
def sumall(f):
    """
    Compute the sum of the values in a :class:`Function`.

    Parameters
    ----------
    f : Function
        Input Function.
    """
    kwargs = {}
    if f.is_TimeFunction and f._time_buffering:
        kwargs[f.time_dim.max_name] = f._time_size - 1

    # Protect SparseFunctions from accessing duplicated (out-of-domain) data,
    # otherwise we would eventually be summing more than expected
    p, eqns = f.guard() if f.is_SparseFunction else (f, [])

    with MPIReduction(f) as mr:
        op = dv.Operator(eqns + [dv.Inc(mr.n[0], p)], name='sum')
        op.apply(**kwargs)

    return np.float(mr.v)
예제 #9
0
def first_touch(array):
    """
    Uses an Operator to initialize the given array in the same pattern that
    would later be used to access it.
    """
    devito.Operator(Eq(array, 0.))()