def main(): global args, best_prec1 args = parser.parse_args() with open(args.config) as f: config = yaml.load(f) for key in config: for k, v in config[key].items(): setattr(args, k, v) print('Enabled distributed training.') rank, world_size = init_dist(backend='nccl', port=args.port) args.rank = rank args.world_size = world_size np.random.seed(args.seed * args.rank) torch.manual_seed(args.seed * args.rank) torch.cuda.manual_seed(args.seed * args.rank) torch.cuda.manual_seed_all(args.seed * args.rank) # create model print("=> creating model '{}'".format(args.model)) if args.SinglePath: architecture = args.arch scale_list = 8 * [1.0] scale_ids = [ 6, 5, 3, 5, 2, 6, 3, 4, 2, 5, 7, 5, 4, 6, 7, 4, 4, 5, 4, 3 ] channels_scales = [] for i in range(len(scale_ids)): channels_scales.append(scale_list[scale_ids[i]]) model = ShuffleNetV2_OneShot(args=args, architecture=architecture, channels_scales=channels_scales) model.cuda() broadcast_params(model) # auto resume from a checkpoint remark = 'imagenet_' if args.remark != 'none': remark += args.remark args.save = 'search-{}-{}-{}'.format(args.save, time.strftime("%Y%m%d-%H%M%S"), remark) args.save_log = 'nas-{}-{}'.format(time.strftime("%Y%m%d-%H%M%S"), remark) generate_date = str(datetime.now().date()) path = os.path.join(generate_date, args.save) if args.rank == 0: log_format = '%(asctime)s %(message)s' utils.create_exp_dir(generate_date, path, scripts_to_save=glob.glob('*.py')) logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format, datefmt='%m/%d %I:%M:%S %p') fh = logging.FileHandler(os.path.join(path, 'log.txt')) fh.setFormatter(logging.Formatter(log_format)) logging.getLogger().addHandler(fh) logging.info("args = %s", args) writer = SummaryWriter('./runs/' + generate_date + '/' + args.save_log) else: writer = None #model_dir = args.model_dir model_dir = path start_epoch = 0 if args.evaluate: load_state_ckpt(args.checkpoint_path, model) cudnn.benchmark = True normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) val_dataset = ImagenetDataset( args.val_root, args.val_source, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ])) val_sampler = DistributedSampler(val_dataset) val_loader = DataLoader(val_dataset, batch_size=50, shuffle=False, num_workers=args.workers, pin_memory=False, sampler=val_sampler) if args.evaluate: validate(val_loader, model, 0, writer, logging) return
def main(): global args, best_prec1 args = parser.parse_args() with open(args.config) as f: config = yaml.load(f) for key in config: for k, v in config[key].items(): setattr(args, k, v) print('Enabled distributed training.') rank, world_size = init_dist(backend='nccl', port=args.port) args.rank = rank args.world_size = world_size # create model print("=> creating model '{}'".format(args.model)) if 'resnetv1sn' in args.model: model = models.__dict__[args.model]( using_moving_average=args.using_moving_average, using_bn=args.using_bn, last_gamma=args.last_gamma) else: model = models.__dict__[args.model]( using_moving_average=args.using_moving_average, using_bn=args.using_bn) model.cuda() broadcast_params(model) # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss().cuda() optimizer = torch.optim.SGD(model.parameters(), args.base_lr, momentum=args.momentum, weight_decay=args.weight_decay) # auto resume from a checkpoint model_dir = args.model_dir start_epoch = 0 if args.rank == 0 and not os.path.exists(model_dir): os.makedirs(model_dir) if args.evaluate: load_state_ckpt(args.checkpoint_path, model) else: best_prec1, start_epoch = load_state(model_dir, model, optimizer=optimizer) if args.rank == 0: writer = SummaryWriter(model_dir) else: writer = None cudnn.benchmark = True normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_dataset = ImagenetDataset( args.train_root, args.train_source, transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), ColorAugmentation(), normalize, ])) val_dataset = ImagenetDataset( args.val_root, args.val_source, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ])) train_sampler = DistributedSampler(train_dataset) val_sampler = DistributedSampler(val_dataset) train_loader = DataLoader(train_dataset, batch_size=args.batch_size // args.world_size, shuffle=False, num_workers=args.workers, pin_memory=False, sampler=train_sampler) val_loader = DataLoader(val_dataset, batch_size=args.batch_size // args.world_size, shuffle=False, num_workers=args.workers, pin_memory=False, sampler=val_sampler) if args.evaluate: validate(val_loader, model, criterion, 0, writer) return niters = len(train_loader) lr_scheduler = LRScheduler(optimizer, niters, args) for epoch in range(start_epoch, args.epochs): train_sampler.set_epoch(epoch) # train for one epoch train(train_loader, model, criterion, optimizer, lr_scheduler, epoch, writer) # evaluate on validation set prec1 = validate(val_loader, model, criterion, epoch, writer) if rank == 0: # remember best prec@1 and save checkpoint is_best = prec1 > best_prec1 best_prec1 = max(prec1, best_prec1) save_checkpoint( model_dir, { 'epoch': epoch + 1, 'model': args.model, 'state_dict': model.state_dict(), 'best_prec1': best_prec1, 'optimizer': optimizer.state_dict(), }, is_best)
def main(): global args, best_prec1 args = parser.parse_args() with open(args.config) as f: config = yaml.load(f) for key in config: for k, v in config[key].items(): setattr(args, k, v) print('Enabled distributed training.') rank, world_size = init_dist( backend='nccl', port=args.port) args.rank = rank args.world_size = world_size np.random.seed(args.seed*args.rank) torch.manual_seed(args.seed*args.rank) torch.cuda.manual_seed(args.seed*args.rank) torch.cuda.manual_seed_all(args.seed*args.rank) # create model print("=> creating model '{}'".format(args.model)) if args.SinglePath: architecture = 20*[0] channels_scales = 20*[1.0] #load derived child network log_alpha = torch.load(args.checkpoint_path, map_location='cuda:{}'.format(torch.cuda.current_device()))['state_dict']['log_alpha'] weights = torch.zeros_like(log_alpha).scatter_(1, torch.argmax(log_alpha, dim = -1).view(-1,1), 1) model = ShuffleNetV2_OneShot(args=args, architecture=architecture, channels_scales=channels_scales, weights=weights) model.cuda() broadcast_params(model) for v in model.parameters(): if v.requires_grad: if v.grad is None: v.grad = torch.zeros_like(v) model.log_alpha.grad = torch.zeros_like(model.log_alpha) if not args.retrain: load_state_ckpt(args.checkpoint_path, model) checkpoint = torch.load(args.checkpoint_path, map_location='cuda:{}'.format(torch.cuda.current_device())) args.base_lr = checkpoint['optimizer']['param_groups'][0]['lr'] if args.reset_bn_stat: model._reset_bn_running_stats() # define loss function (criterion) and optimizer criterion = CrossEntropyLoss(smooth_eps=0.1, smooth_dist=(torch.ones(1000)*0.001).cuda()).cuda() wo_wd_params = [] wo_wd_param_names = [] network_params = [] network_param_names = [] for name, mod in model.named_modules(): #if isinstance(mod, (nn.BatchNorm2d, SwitchNorm2d)): if isinstance(mod, nn.BatchNorm2d): for key, value in mod.named_parameters(): wo_wd_param_names.append(name+'.'+key) for key, value in model.named_parameters(): if key != 'log_alpha': if value.requires_grad: if key in wo_wd_param_names: wo_wd_params.append(value) else: network_params.append(value) network_param_names.append(key) params = [ {'params': network_params, 'lr': args.base_lr, 'weight_decay': args.weight_decay }, {'params': wo_wd_params, 'lr': args.base_lr, 'weight_decay': 0.}, ] param_names = [network_param_names, wo_wd_param_names] if args.rank == 0: print('>>> params w/o weight decay: ', wo_wd_param_names) optimizer = torch.optim.SGD(params, momentum=args.momentum) arch_optimizer=None # auto resume from a checkpoint remark = 'imagenet_' remark += 'epo_' + str(args.epochs) + '_layer_' + str(args.layers) + '_batch_' + str(args.batch_size) + '_lr_' + str(float("{0:.2f}".format(args.base_ lr))) + '_seed_' + str(args.seed) if args.remark != 'none': remark += '_'+args.remark args.save = 'search-{}-{}-{}'.format(args.save, time.strftime("%Y%m%d-%H%M%S"), remark) args.save_log = 'nas-{}-{}'.format(time.strftime("%Y%m%d-%H%M%S"), remark) generate_date = str(datetime.now().date()) path = os.path.join(generate_date, args.save) if args.rank == 0: log_format = '%(asctime)s %(message)s' utils.create_exp_dir(generate_date, path, scripts_to_save=glob.glob('*.py')) logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format, datefmt='%m/%d %I:%M:%S %p') fh = logging.FileHandler(os.path.join(path, 'log.txt')) fh.setFormatter(logging.Formatter(log_format)) logging.getLogger().addHandler(fh) logging.info("args = %s", args) writer = SummaryWriter('./runs/' + generate_date + '/' + args.save_log) else: writer = None #model_dir = args.model_dir model_dir = path start_epoch = 0 if args.evaluate: load_state_ckpt(args.checkpoint_path, model) else: best_prec1, start_epoch = load_state(model_dir, model, optimizer=optimizer) cudnn.benchmark = True normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_dataset = ImagenetDataset( args.train_root, args.train_source, transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ])) train_dataset_wo_ms = ImagenetDataset( args.train_root, args.train_source, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ])) val_dataset = ImagenetDataset( args.val_root, args.val_source, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ])) train_sampler = DistributedSampler(train_dataset) val_sampler = DistributedSampler(val_dataset) train_loader = DataLoader( train_dataset, batch_size=args.batch_size//args.world_size, shuffle=False, num_workers=args.workers, pin_memory=False, sampler=train_sampler) train_loader_wo_ms = DataLoader( train_dataset_wo_ms, batch_size=args.batch_size//args.world_size, shuffle=False, num_workers=args.workers, pin_memory=False, sampler=train_sampler) val_loader = DataLoader( val_dataset, batch_size=50, shuffle=False, num_workers=args.workers, pin_memory=False, sampler=val_sampler) if args.evaluate: validate(val_loader, model, criterion, 0, writer, logging) return niters = len(train_loader) lr_scheduler = LRScheduler(optimizer, niters, args) for epoch in range(start_epoch, args.epochs): train_sampler.set_epoch(epoch) if args.rank == 0 and args.SinglePath: logging.info('epoch %d', epoch) # evaluate on validation set after loading the model if epoch == 0 and not args.reset_bn_stat: prec1 = validate(val_loader, model, criterion, epoch, writer, logging) # train for one epoch if epoch >= args.epochs - 5 and args.lr_mode == 'step' and args.off_ms and args.retrain: train(train_loader_wo_ms, model, criterion, optimizer, arch_optimizer, lr_scheduler, epoch, writer, logging) else: train(train_loader, model, criterion, optimizer, arch_optimizer, lr_scheduler, epoch, writer, logging) # evaluate on validation set prec1 = validate(val_loader, model, criterion, epoch, writer, logging) if rank == 0: # remember best prec@1 and save checkpoint is_best = prec1 > best_prec1 best_prec1 = max(prec1, best_prec1) save_checkpoint(model_dir, { 'epoch': epoch + 1, 'model': args.model, 'state_dict': model.state_dict(), 'best_prec1': best_prec1, 'optimizer': optimizer.state_dict(), }, is_best)
def main(): global args, best_prec1 args = parser.parse_args() with open(args.config) as f: config = yaml.load(f) for key in config: for k, v in config[key].items(): setattr(args, k, v) print('Enabled distributed training.') rank, world_size = init_dist( backend='nccl', port=args.port) args.rank = rank args.world_size = world_size np.random.seed(args.seed*args.rank) torch.manual_seed(args.seed*args.rank) torch.cuda.manual_seed(args.seed*args.rank) torch.cuda.manual_seed_all(args.seed*args.rank) print('random seed: ', args.seed*args.rank) # create model print("=> creating model '{}'".format(args.model)) if args.SinglePath: architecture = 20*[0] channels_scales = 20*[1.0] model = ShuffleNetV2_OneShot(args=args, architecture=architecture, channels_scales=channels_scales) model.cuda() broadcast_params(model) for v in model.parameters(): if v.requires_grad: if v.grad is None: v.grad = torch.zeros_like(v) model.log_alpha.grad = torch.zeros_like(model.log_alpha) criterion = CrossEntropyLoss(smooth_eps=0.1, smooth_dist=(torch.ones(1000)*0.001).cuda()).cuda() wo_wd_params = [] wo_wd_param_names = [] network_params = [] network_param_names = [] for name, mod in model.named_modules(): if isinstance(mod, nn.BatchNorm2d): for key, value in mod.named_parameters(): wo_wd_param_names.append(name+'.'+key) for key, value in model.named_parameters(): if key != 'log_alpha': if value.requires_grad: if key in wo_wd_param_names: wo_wd_params.append(value) else: network_params.append(value) network_param_names.append(key) params = [ {'params': network_params, 'lr': args.base_lr, 'weight_decay': args.weight_decay }, {'params': wo_wd_params, 'lr': args.base_lr, 'weight_decay': 0.}, ] param_names = [network_param_names, wo_wd_param_names] if args.rank == 0: print('>>> params w/o weight decay: ', wo_wd_param_names) optimizer = torch.optim.SGD(params, momentum=args.momentum) if args.SinglePath: arch_optimizer = torch.optim.Adam( [param for name, param in model.named_parameters() if name == 'log_alpha'], lr=args.arch_learning_rate, betas=(0.5, 0.999), weight_decay=args.arch_weight_decay ) # auto resume from a checkpoint remark = 'imagenet_' remark += 'epo_' + str(args.epochs) + '_layer_' + str(args.layers) + '_batch_' + str(args.batch_size) + '_lr_' + str(args.base_lr) + '_seed_' + str(args.seed) + '_pretrain_' + str(args.pretrain_epoch) if args.early_fix_arch: remark += '_early_fix_arch' if args.flops_loss: remark += '_flops_loss_' + str(args.flops_loss_coef) if args.remark != 'none': remark += '_'+args.remark args.save = 'search-{}-{}-{}'.format(args.save, time.strftime("%Y%m%d-%H%M%S"), remark) args.save_log = 'nas-{}-{}'.format(time.strftime("%Y%m%d-%H%M%S"), remark) generate_date = str(datetime.now().date()) path = os.path.join(generate_date, args.save) if args.rank == 0: log_format = '%(asctime)s %(message)s' utils.create_exp_dir(generate_date, path, scripts_to_save=glob.glob('*.py')) logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format, datefmt='%m/%d %I:%M:%S %p') fh = logging.FileHandler(os.path.join(path, 'log.txt')) fh.setFormatter(logging.Formatter(log_format)) logging.getLogger().addHandler(fh) logging.info("args = %s", args) writer = SummaryWriter('./runs/' + generate_date + '/' + args.save_log) else: writer = None model_dir = path start_epoch = 0 if args.evaluate: load_state_ckpt(args.checkpoint_path, model) else: best_prec1, start_epoch = load_state(model_dir, model, optimizer=optimizer) cudnn.benchmark = True cudnn.enabled = True normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_dataset = ImagenetDataset( args.train_root, args.train_source, transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ])) train_dataset_wo_ms = ImagenetDataset( args.train_root, args.train_source, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ])) val_dataset = ImagenetDataset( args.val_root, args.val_source, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ])) train_sampler = DistributedSampler(train_dataset) val_sampler = DistributedSampler(val_dataset) train_loader = DataLoader( train_dataset, batch_size=args.batch_size//args.world_size, shuffle=False, num_workers=args.workers, pin_memory=False, sampler=train_sampler) train_loader_wo_ms = DataLoader( train_dataset_wo_ms, batch_size=args.batch_size//args.world_size, shuffle=False, num_workers=args.workers, pin_memory=False, sampler=train_sampler) val_loader = DataLoader( val_dataset, batch_size=50, shuffle=False, num_workers=args.workers, pin_memory=False, sampler=val_sampler) if args.evaluate: validate(val_loader, model, criterion, 0, writer, logging) return niters = len(train_loader) lr_scheduler = LRScheduler(optimizer, niters, args) for epoch in range(start_epoch, 85): train_sampler.set_epoch(epoch) if args.early_fix_arch: if len(model.fix_arch_index.keys()) > 0: for key, value_lst in model.fix_arch_index.items(): model.log_alpha.data[key, :] = value_lst[1] sort_log_alpha = torch.topk(F.softmax(model.log_alpha.data, dim=-1), 2) argmax_index = (sort_log_alpha[0][:,0] - sort_log_alpha[0][:,1] >= 0.3) for id in range(argmax_index.size(0)): if argmax_index[id] == 1 and id not in model.fix_arch_index.keys(): model.fix_arch_index[id] = [sort_log_alpha[1][id,0].item(), model.log_alpha.detach().clone()[id, :]] if args.rank == 0 and args.SinglePath: logging.info('epoch %d', epoch) logging.info(model.log_alpha) logging.info(F.softmax(model.log_alpha, dim=-1)) logging.info('flops %fM', model.cal_flops()) # train for one epoch if epoch >= args.epochs - 5 and args.lr_mode == 'step' and args.off_ms: train(train_loader_wo_ms, model, criterion, optimizer, arch_optimizer, lr_scheduler, epoch, writer, logging) else: train(train_loader, model, criterion, optimizer, arch_optimizer, lr_scheduler, epoch, writer, logging) # evaluate on validation set prec1 = validate(val_loader, model, criterion, epoch, writer, logging) if args.gen_max_child: args.gen_max_child_flag = True prec1 = validate(val_loader, model, criterion, epoch, writer, logging) args.gen_max_child_flag = False if rank == 0: # remember best prec@1 and save checkpoint is_best = prec1 > best_prec1 best_prec1 = max(prec1, best_prec1) save_checkpoint(model_dir, { 'epoch': epoch + 1, 'model': args.model, 'state_dict': model.state_dict(), 'best_prec1': best_prec1, 'optimizer': optimizer.state_dict(), }, is_best)
def main(args): print(args) model = ArcFaceWithLoss(args.backbone, 85742, args.norm_func, args.embedding_size, args.use_se) model.cuda() load_state_ckpt(args.checkpoint_path, model) facescrub_out = os.path.join('./' + args.algo + '_' + args.output, 'facescrub') megaface_out = os.path.join('./' + args.algo + '_' + args.output, 'megaface') i = 0 succ = 0 buffer = [] for line in open(args.facescrub_lst, 'r'): if i % 1000 == 0: print("writing fs", i, succ) i += 1 image_path = line.strip() _path = image_path.split('/') a, b = _path[-2], _path[-1] out_dir = os.path.join(facescrub_out, a) if not os.path.exists(out_dir): os.makedirs(out_dir) image_path = os.path.join(args.facescrub_root, image_path) img = read_img(image_path) if img is None: print('read error:', image_path) continue out_path = os.path.join(out_dir, b + "_%s.bin" % (args.algo)) item = (img, out_path) buffer.append(item) if len(buffer) == args.batch_size: get_and_write(buffer, model) buffer = [] succ += 1 if len(buffer) > 0: get_and_write(buffer, model) buffer = [] print('fs stat', i, succ) i = 0 succ = 0 buffer = [] for line in open(args.megaface_lst, 'r'): if i % 1000 == 0: print("writing mf", i, succ) i += 1 image_path = line.strip() _path = image_path.split('/') a1, a2, b = _path[-3], _path[-2], _path[-1] out_dir = os.path.join(megaface_out, a1, a2) if not os.path.exists(out_dir): os.makedirs(out_dir) # continue # print(landmark) image_path = os.path.join(args.megaface_root, image_path) img = read_img(image_path) if img is None: print('read error:', image_path) continue out_path = os.path.join(out_dir, b + "_%s.bin" % (args.algo)) item = (img, out_path) buffer.append(item) if len(buffer) == args.batch_size: get_and_write(buffer, model) buffer = [] succ += 1 if len(buffer) > 0: get_and_write(buffer, model) buffer = [] print('mf stat', i, succ)
def main_worker(gpu, ngpus_per_node, args): args.gpu = gpu args.rank = args.rank * ngpus_per_node + gpu if args.distributed: print(args.backend, args.world_size, args.rank) dist.init_process_group(backend=args.backend, init_method='tcp://127.0.0.1:6668', world_size=args.world_size, rank=args.rank) print('Enabled distributed training.') # create model print("=> creating model '{}'".format(args.model)) model = models.__dict__[args.model](N=args.N, M=args.M) torch.cuda.set_device(args.gpu) ipClass = PruningMethodTransposableBlockL1(block_size=args.M, topk=args.N) if args.load_mask: load_state_and_masks(model, args) print("Masks loaded!") else: for n, m in model.named_modules(): if isinstance(m, SparseConvTranspose) or isinstance( m, SparseLinearTranspose): # m.maskBuff.data = ipClass.compute_mask(m.weight, torch.ones_like(m.weight)) setattr( m.weight, "mask", ipClass.compute_mask(m.weight, torch.ones_like(m.weight))) if args.save_mask: save_masks(model, args) print("Masks saved!") model.cuda(args.gpu) #args.batch_size = int(args.batch_size / ngpus_per_node) args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node) if args.distributed: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.gpu]) #broadcast_params(model) print(model) # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss().cuda() if args.sparse_optimizer: optimizer = sparse_optimizer.SGD(model.parameters(), args.base_lr, momentum=args.momentum, weight_decay=args.weight_decay) else: optimizer = torch.optim.SGD(model.parameters(), args.base_lr, momentum=args.momentum, weight_decay=args.weight_decay) # auto resume from a checkpoint model_dir = args.model_dir start_epoch = 0 best_prec1 = 0 if args.rank == 0 and not os.path.exists(model_dir): os.makedirs(model_dir) if args.evaluate: load_state_ckpt(args.checkpoint_path, model) else: best_prec1, start_epoch = load_state(model_dir, model, optimizer=optimizer) if args.rank == 0 or not args.distributed: writer = SummaryWriter(model_dir) else: writer = None cudnn.benchmark = True normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_dataset = datasets.ImageFolder( args.train_root, transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), ColorAugmentation(), normalize, ])) val_dataset = datasets.ImageFolder( args.val_root, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ])) if args.distributed: train_sampler = DistributedSampler(train_dataset) val_sampler = DistributedSampler(val_dataset) else: train_sampler = None val_sampler = None train_loader = DataLoader(train_dataset, batch_size=args.batch_size // args.world_size, shuffle=False, num_workers=args.workers, pin_memory=False, sampler=train_sampler) val_loader = DataLoader(val_dataset, batch_size=args.batch_size // args.world_size, shuffle=False, num_workers=args.workers, pin_memory=False, sampler=val_sampler) if args.evaluate: validate(val_loader, model, criterion, 0, writer) return niters = len(train_loader) lr_scheduler = LRScheduler(optimizer, niters, args) for epoch in range(start_epoch, args.epochs): if args.distributed: train_sampler.set_epoch(epoch) # train for one epoch train(train_loader, model, criterion, optimizer, lr_scheduler, epoch, writer, args) # evaluate on validation set prec1 = validate(val_loader, model, criterion, epoch, writer, args) if args.rank == 0: # remember best prec@1 and save checkpoint is_best = prec1 > best_prec1 best_prec1 = max(prec1, best_prec1) save_checkpoint( model_dir, { 'epoch': epoch + 1, 'model': args.model, 'state_dict': model.state_dict(), 'best_prec1': best_prec1, 'optimizer': optimizer.state_dict(), }, is_best)