def __init__(self, dataset_path, frame=None, loop=True): self._dataset_path = dataset_path self._frame = frame self._color_frame = frame self._ir_frame = frame self._im_index = 0 self._running = False from dexnet.learning import TensorDataset self._dataset = TensorDataset.open(self._dataset_path) self._num_images = self._dataset.num_datapoints self._image_rescale_factor = 1.0 if 'image_rescale_factor' in self._dataset.metadata.keys(): self._image_rescale_factor = 1.0 / self._dataset.metadata[ 'image_rescale_factor'] datapoint = self._dataset.datapoint( 0, [TensorDatasetVirtualSensor.CAMERA_INTR_FIELD]) camera_intr_vec = datapoint[ TensorDatasetVirtualSensor.CAMERA_INTR_FIELD] self._color_intr = CameraIntrinsics.from_vec( camera_intr_vec, frame=self._color_frame).resize(self._image_rescale_factor) self._ir_intr = CameraIntrinsics.from_vec( camera_intr_vec, frame=self._ir_frame).resize(self._image_rescale_factor)
def analyze_classification_performance(model_dir, config, dataset_path=None): # read params predict_batch_size = config['batch_size'] randomize = config['randomize'] plotting_config = config['plotting'] figsize = plotting_config['figsize'] font_size = plotting_config['font_size'] legend_font_size = plotting_config['legend_font_size'] line_width = plotting_config['line_width'] colors = plotting_config['colors'] dpi = plotting_config['dpi'] style = '-' class_remapping = None if 'class_remapping' in config.keys(): class_remapping = config['class_remapping'] # read training config training_config_filename = os.path.join(model_dir, 'training_config.yaml') training_config = YamlConfig(training_config_filename) # read training params indices_filename = None if dataset_path is None: dataset_path = training_config['dataset'] indices_filename = os.path.join(model_dir, 'splits.npz') dataset_prefix, dataset_name = os.path.split(dataset_path) if dataset_name == '': _, dataset_name = os.path.split(dataset_prefix) x_names = training_config['x_names'] y_name = training_config['y_name'] batch_size = training_config['training']['batch_size'] iterator_config = training_config['data_iteration'] x_name = x_names[0] # set analysis dir analysis_dir = os.path.join(model_dir, 'analysis') if not os.path.exists(analysis_dir): os.mkdir(analysis_dir) # setup log file experiment_log_filename = os.path.join(analysis_dir, '%s_analysis.log' %(dataset_name)) if os.path.exists(experiment_log_filename): os.remove(experiment_log_filename) formatter = logging.Formatter('%(asctime)s %(levelname)s: %(message)s') hdlr = logging.FileHandler(experiment_log_filename) hdlr.setFormatter(formatter) logging.getLogger().addHandler(hdlr) # setup plotting plt.figure(figsize=(figsize, figsize)) # read dataset dataset = TensorDataset.open(dataset_path) # read dataset splits if indices_filename is None: splits = {dataset_name: np.arange(dataset.num_datapoints)} else: splits = np.load(indices_filename)['arr_0'].tolist() # load cnn logging.info('Loading model %s' %(model_dir)) cnn = ClassificationCNN.open(model_dir) # save examples logging.info('Saving examples of each class') all_labels = np.arange(cnn.num_classes) label_counts = {} [label_counts.update({l:0}) for l in all_labels] for tensor_ind in range(dataset.num_tensors): tensor = dataset.tensor(y_name, tensor_ind) for label in tensor: label_counts[label] += 1 d = utils.sqrt_ceil(cnn.num_classes) plt.clf() for i, label in enumerate(all_labels): tensor_ind = 0 label_found = False while not label_found and tensor_ind < dataset.num_tensors: tensor = dataset.tensor(y_name, tensor_ind) ind = np.where(tensor.arr == label)[0] if ind.shape[0] > 0: ind = ind[0] + dataset.datapoints_per_tensor * (tensor_ind) label_found = True tensor_ind += 1 if not label_found: continue datapoint = dataset[ind] example_im = datapoint[x_name] plt.subplot(d,d,i+1) plt.imshow(example_im[:,:,:3].astype(np.uint8)) plt.title('Class %03d: %.3f%%' %(label, float(label_counts[label]) / dataset.num_datapoints), fontsize=3) plt.axis('off') plt.savefig(os.path.join(analysis_dir, '%s_classes.pdf' %(dataset_name))) # evaluate on dataset results = {} for split_name, indices in splits.iteritems(): logging.info('Evaluating performance on split: %s' %(split_name)) # predict if randomize: pred_probs, true_labels = cnn.evaluate_on_dataset(dataset, indices=indices, batch_size=predict_batch_size) pred_labels = np.argmax(pred_probs, axis=1) else: true_labels = [] pred_labels = [] pred_probs = [] for datapoint in dataset: im = ColorImage(datapoint['color_ims'].astype(np.uint8)[:,:,:3]) true_label = datapoint['stp_labels'] pred_prob = cnn.predict(im) pred_label = np.argmax(pred_prob, axis=1) true_labels.append(true_label) pred_labels.append(pred_label) pred_probs.append(pred_prob.ravel()) """ if class_remapping is not None: true_label = class_remapping[true_label] plt.figure() plt.imshow(im.raw_data) plt.title('T: %d, P: %d' %(true_label, pred_label)) plt.show() """ true_labels = np.array(true_labels) pred_labels = np.array(pred_labels) pred_probs = np.array(pred_probs) # apply optional class re-mapping if class_remapping is not None: new_true_labels = np.zeros(true_labels.shape) for orig_label, new_label in class_remapping.iteritems(): new_true_labels[true_labels==orig_label] = new_label true_labels = new_true_labels # compute classification results result = ClassificationResult([pred_probs], [true_labels]) results[split_name] = result # print stats logging.info('SPLIT: %s' %(split_name)) logging.info('Acc: %.3f' %(result.accuracy)) logging.info('AP: %.3f' %(result.ap_score)) logging.info('AUC: %.3f' %(result.auc_score)) # save confusion matrix confusion = result.confusion_matrix.data plt.clf() plt.imshow(confusion, cmap=plt.cm.gray, interpolation='none') plt.locator_params(nticks=cnn.num_classes) plt.xlabel('Predicted', fontsize=font_size) plt.ylabel('Actual', fontsize=font_size) plt.savefig(os.path.join(analysis_dir, '%s_confusion.pdf' %(split_name)), dpi=dpi) # save analysis result_filename = os.path.join(analysis_dir, '%s.cres' %(split_name)) result.save(result_filename) # plot colormap = plt.get_cmap('tab10') num_colors = 9 plt.clf() for i, split_name in enumerate(splits.keys()): result = results[split_name] precision, recall, taus = result.precision_recall_curve() color = colormap(float(colors[i%num_colors]) / num_colors) plt.plot(recall, precision, linewidth=line_width, color=color, linestyle=style, label=split_name) plt.xlabel('Recall', fontsize=font_size) plt.ylabel('Precision', fontsize=font_size) plt.title('Precision-Recall Curve', fontsize=font_size) handles, plt_labels = plt.gca().get_legend_handles_labels() plt.legend(handles, plt_labels, loc='best', fontsize=legend_font_size) plt.savefig(os.path.join(analysis_dir, '%s_precision_recall.pdf' %(dataset_name)), dpi=dpi) plt.clf() for i, split_name in enumerate(splits.keys()): result = results[split_name] fpr, tpr, taus = result.roc_curve() color = colormap(float(colors[i%num_colors]) / num_colors) plt.plot(fpr, tpr, linewidth=line_width, color=color, linestyle=style, label=split_name) plt.xlabel('FPR', fontsize=font_size) plt.ylabel('TPR', fontsize=font_size) plt.title('Receiver Operating Characteristic', fontsize=font_size) handles, plt_labels = plt.gca().get_legend_handles_labels() plt.legend(handles, plt_labels, loc='best', fontsize=legend_font_size) plt.savefig(os.path.join(analysis_dir, '%s_roc.pdf' %(dataset_name)), dpi=dpi)
###################################################################### if config_filename is None: config_filename = os.path.join( os.path.dirname(os.path.realpath(__file__)), '..', 'cfg/tools/generate_gqcnn_dataset.yaml') config = YamlConfig(config_filename) # set tensor dataset config tensor_config = config['tensors'] tensor_config['fields']['depth_ims_tf_table_96'][ 'height'] = im_final_height tensor_config['fields']['depth_ims_tf_table_96']['width'] = im_final_width # tensor_dataset = TensorDataset(output_dir, tensor_config) tensor_dataset = TensorDataset.open(output_dir) tensor_datapoint = tensor_dataset.datapoint_template ###################################################################### # open tensor dirs if not os.path.exists(dataset_path): raise ValueError('Dataset %s not found!' % (dataset_path)) # create subdirectories image_dir = os.path.join(dataset_path, 'images') if not os.path.exists(image_dir): raise ValueError('Image folder %s not found!' % (image_dir)) grasp_dir = os.path.join(dataset_path, 'grasps') if not os.path.exists(grasp_dir):
'--config_filename', type=str, default=None, help= 'Yaml filename containing configuration parameters for the visualization' ) args = parser.parse_args() dataset_path = args.dataset_path config_filename = args.config_filename # handle config filename if config_filename is None: config_filename = os.path.join( os.path.dirname(os.path.realpath(__file__)), '..', 'cfg/tools/visualize_gqcnn_dataset.yaml') # turn relative paths absolute if not os.path.isabs(dataset_path): dataset_path = os.path.join(os.getcwd(), dataset_path) if not os.path.isabs(config_filename): config_filename = os.path.join(os.getcwd(), config_filename) # read config config = YamlConfig(config_filename) # open tensor dataset dataset = TensorDataset.open(dataset_path) # visualize a tensor dataset visualize_tensor_dataset(dataset, config)
def finetune_classification_cnn(config): """ Main function. """ # read params dataset = config['dataset'] x_names = config['x_names'] y_name = config['y_name'] model_dir = config['model_dir'] debug = config['debug'] num_classes = None if 'num_classes' in config.keys(): num_classes = config['num_classes'] batch_size = config['training']['batch_size'] train_pct = config['training']['train_pct'] model_save_period = config['training']['model_save_period'] data_aug_config = config['data_augmentation'] preproc_config = config['preprocessing'] iterator_config = config['data_iteration'] model_config = config['model'] base_model_config = model_config['base'] optimization_config = config['optimization'] train_config = config['training'] generator_image_shape = None if 'image_shape' in data_aug_config.keys(): generator_image_shape = data_aug_config['image_shape'] optimizer_name = optimization_config['optimizer'] model_params = {} if 'params' in model_config.keys(): model_params = model_config['params'] base_model_params = {} if 'params' in base_model_config.keys(): base_model_params = base_model_config['params'] if debug: seed = 108 random.seed(seed) np.random.seed(seed) # generate model dir if not os.path.exists(model_dir): os.mkdir(model_dir) model_id = utils.gen_experiment_id() model_dir = os.path.join(model_dir, 'model_%s' % (model_id)) if not os.path.exists(model_dir): os.mkdir(model_dir) logging.info('Saving model to %s' % (model_dir)) latest_model_filename = os.path.join(model_dir, 'weights_{epoch:05d}.h5') best_model_filename = os.path.join(model_dir, 'weights.h5') # save config training_config_filename = os.path.join(model_dir, 'training_config.yaml') config.save(training_config_filename) # open dataset dataset = TensorDataset.open(dataset) # split dataset indices_filename = os.path.join(model_dir, 'splits.npz') if os.path.exists(indices_filename): indices = np.load(indices_filename)['arr_0'].tolist() train_indices = indices['train'] val_indices = indices['val'] else: train_indices, val_indices = dataset.split(train_pct) indices = np.array({'train': train_indices, 'val': val_indices}) np.savez_compressed(indices_filename, indices) num_train = train_indices.shape[0] num_val = val_indices.shape[0] val_steps = int(np.ceil(float(num_val) / batch_size)) # init generator train_generator_filename = os.path.join(model_dir, 'train_preprocessor.pkl') val_generator_filename = os.path.join(model_dir, 'val_preprocessor.pkl') if os.path.exists(train_generator_filename): logging.info('Loading generators') train_generator = pkl.load(open(train_generator_filename, 'rb')) val_generator = pkl.load(open(val_generator_filename, 'rb')) else: logging.info('Fitting generator') train_generator = TensorDataGenerator(num_classes=num_classes, **data_aug_config) val_generator = TensorDataGenerator( featurewise_center=data_aug_config['featurewise_center'], featurewise_std_normalization=data_aug_config[ 'featurewise_std_normalization'], image_shape=generator_image_shape, num_classes=num_classes) fit_start = time.time() train_generator.fit(dataset, x_names, y_name, indices=train_indices, **preproc_config) val_generator.mean = train_generator.mean val_generator.std = train_generator.std val_generator.min_output = train_generator.min_output val_generator.max_output = train_generator.max_output val_generator.num_classes = train_generator.num_classes fit_stop = time.time() logging.info('Generator fit took %.3f sec' % (fit_stop - fit_start)) pkl.dump(train_generator, open(train_generator_filename, 'wb')) pkl.dump(val_generator, open(val_generator_filename, 'wb')) if num_classes is None: num_classes = int(train_generator.num_classes) # init iterator train_iterator = train_generator.flow_from_dataset(dataset, x_names, y_name, indices=train_indices, batch_size=batch_size, **iterator_config) val_iterator = val_generator.flow_from_dataset(dataset, x_names, y_name, indices=val_indices, batch_size=batch_size, **iterator_config) # setup model base_cnn = ClassificationCNN.open(base_model_config['model'], base_model_config['type'], input_name=x_names[0], **base_model_params) cnn = FinetunedClassificationCNN(base_cnn=base_cnn, name='dexresnet', num_classes=num_classes, output_name=y_name, im_preprocessor=val_generator, **model_params) # setup training cnn.freeze_base_cnn() if optimizer_name == 'sgd': optimizer = SGD(lr=optimization_config['lr'], momentum=optimization_config['momentum']) elif optimizer_name == 'adam': optimizer = Adam(lr=optimization_config['lr']) else: raise ValueError('Optimizer %s not supported!' % (optimizer_name)) model = cnn.model model.compile(optimizer=optimizer, loss=optimization_config['loss'], metrics=optimization_config['metrics']) # train steps_per_epoch = int(np.ceil(float(num_train) / batch_size)) latest_model_ckpt = ModelCheckpoint(latest_model_filename, period=model_save_period) best_model_ckpt = ModelCheckpoint(best_model_filename, save_best_only=True, period=model_save_period) train_history_cb = TrainHistory(model_dir) callbacks = [latest_model_ckpt, best_model_ckpt, train_history_cb] history = model.fit_generator( train_iterator, steps_per_epoch=steps_per_epoch, epochs=train_config['epochs'], callbacks=callbacks, validation_data=val_iterator, validation_steps=val_steps, class_weight=train_config['class_weight'], use_multiprocessing=train_config['use_multiprocessing']) # save model cnn.save(model_dir) # save history history_filename = os.path.join(model_dir, 'history.pkl') pkl.dump(history.history, open(history_filename, 'wb'))