예제 #1
0
파일: runner.py 프로젝트: horseburger/SISE
def run_dfs(p):
    results = init_results()

    i = 0
    progress = len(p) * 8
    for puzzle in p:
        # for puzzle in ["4x4_01_00001.txt", "4x4_02_00001.txt", "4x4_03_00001.txt", "4x4_04_00001.txt", "4x4_05_00001.txt", "4x4_06_00001.txt", "4x4_07_00001.txt"]:
        for order in orders:
            dfs = DFS(search_order=order)
            dim, lay = load_config(os.path.join("puzzles", puzzle))
            dfs.model.load_layout(dim, lay)
            t = time()
            path = dfs.run()
            t = round((time() - t) * 1000, 3)

            depth = int(puzzle.split('_')[1])
            # print(r, puzzle, order)
            if path == -1:
                continue

            result = {
                "path_length": len(path),
                "frontier": len(dfs.frontier) + len(dfs.explored),
                "explored": len(dfs.explored),
                "depth": dfs.deepest,
                "time": t
            }

            results["DFS"][order][depth].append(result)

            print("DFS progress: {}%".format(round((i / progress) * 100, 2)),
                  end='\r',
                  flush=True)
            i += 1
    return results
예제 #2
0
def main():
    g = MyGraph(100)
    graph = g.generate()
    # graph = g.static()
    d = DFS()
    v = d.dfs(g.graph, 1)
    print v
    g.render()
예제 #3
0
 def setUp(self):
     self.dfs = DFS()
     self.graph = Graph()
     self.graph.insert_edge(create_edge(0, 1, 10))
     self.graph.insert_edge(create_edge(1, 3, 10))
     self.graph.insert_edge(create_edge(0, 2, 20))
     self.graph.insert_edge(create_edge(0, 3, 30))
     self.graph.insert_edge(create_edge(2, 3, 60))
     self.graph.insert_edge(create_edge(3, 4, 120))
예제 #4
0
class TestDepthFirstSearch(unittest.TestCase):
    def setUp(self):
        self.dfs = DFS(ROMENIA, start="Arad")

    def test_dfs_search_success(self):
        self.assertEqual("Bucharest", self.dfs.search("Bucharest"))

    def test_dfs_search_failure(self):
        target = "Catalao"
        expected = "{0} Not Found".format(target)
        self.assertEqual(expected, self.dfs.search(target))

    def test_get_path_success(self):
        path_expected = [
            "Arad",
            "Sibiu",
            "Rimnicu Vilcea",
            "Pitesti",
            "Craiova",
            "Dobreta",
            "Mehadia",
            "Lugoj",
            "Timisoara",
        ]
        self.dfs.search("Bucharest")
        self.assertEqual(path_expected, self.dfs.get_path())

    def test_get_cost_success(self):
        self.dfs.search("Bucharest")
        self.assertEqual(9, self.dfs.cost())
예제 #5
0
파일: scc.py 프로젝트: n3d1117/LabAlg17
    def scc(self):

        # calcola i tempi di completamento per ciascun vertice
        dfs = DFS(self.matrice_adiacenza)

        # memorizzo i vertici in una variabile locale
        vertici = dfs.vertici

        # calcolo il grafo trasposto formato dagli archi del grafo originale con direzioni invertite
        matrice_trasposta = self.trasposta(self.matrice_adiacenza)

        # chiamo DFS su grafo trasposto passando i vertici calcolati in precedenza
        dfs_t = DFS(matrice_trasposta, vertici)

        return dfs_t.numero_di_scc, dfs_t.dizionario_scc
예제 #6
0
def solve():
    """
        Solve the puzzle by getting the required parameters from the request args.
    """
    algorithm = request.args['algorithm']
    arr = list(map(int, request.args['input[]'][1:-1].split(',')))
    print(algorithm)
    agent = None
    if algorithm == "BFS":
        agent = BFS()
    elif algorithm == "DFS":
        agent = DFS()
    elif algorithm == "A start (Euclidean)":
        agent = AStar(Euclidean)
    elif algorithm == "A start (Manhatten)":
        agent = AStar(Manhatten)
    else:
        return arr

    start = timeit.default_timer()
    res = agent.search(arr)
    end = timeit.default_timer()

    res['time'] = end - start

    ret = jsonify(res)
    return ret
def main():
    # python driver.py bfs 0,8,7,6,5,4,3,2,1
    arguments = sys.argv
    search_type = arguments[1]
    # create a list of initial states from arguments[2]
    initial_state_list = [int(x) for x in arguments[2].split(',')]
    # now use this list to create initial_state object from State class
    initial_state = State(initial_state_list)
    # let's use time var to time execution
    start_time = time.time()
    # create output Object from Output class
    output = Output()

    if search_type == 'bfs':
        output = BFS(initial_state)
    elif search_type == 'dfs':
        output = DFS(initial_state)
    # elif search_type == 'ast':
    #     output = solve_ast(initial_state)
    else:
        print('Invalid search_type: {}'.format(search_type))

    # Let's add max ram uage and running time to output object
    output.max_ram_usage = resource.getrusage(
        resource.RUSAGE_SELF).ru_maxrss / 1024
    output.running_time = time.time() - start_time
    f = open('output.txt', 'w')
    f.write(str(output))
    f.close()
def measure_dfs_recurrent():
    dfs = DFS(Graph(0))
    avg_memory_consumption = []

    for i in range(START_COUNTING_FROM_NODE, NUM_OF_NODES):
        print(f"Measuring DFS Recurrent for {i} nodes.")

        graph = Graph(i)
        dfs.graph = graph
        starting_node = next(iter(graph.graph))

        mem_usage = memory_usage((dfs.depth_first_search, (), {
            'start_node': starting_node
        }))
        avg_memory_consumption.append(mem_usage[-1])

    return avg_memory_consumption
def topological_sort(graph):
    finishing_list = []

    def pos_function(vertex):
        finishing_list.append(vertex)

    DFS(graph, pos_function=pos_function)
    finishing_list.reverse()
    return finishing_list
예제 #10
0
    def test_connectedness(self, v):
        dfs = DFS(self, v)
        for i in range(self.V):
            if dfs.marked[i]:
                print(str(i) + " ", end="")

        if dfs.count != self.V:
            print("NOT ", end="")

        print("connected")
예제 #11
0
def main():
    coppie = [(1, 3), (1, 2), (1, 4), (3, 7), (3, 10), (4, 5), (5, 9), (5, 8),
              (6, 10), (6, 8), (7, 6), (7, 2), (9, 10)]

    V, E = init_grapho(10, coppie)

    G = Grafo(V, E)

    DFS(G)

    print(G)
예제 #12
0
def test_random():
    """
        Test all approaches on random graph.
    """
    num_of_nodes = 7
    graph = Graph(num_of_nodes)

    starting_node = next(iter(graph.graph))

    print("{:-^100}".format(" TESTING RANDOM PATH "))

    dfs = DFS(graph)
    paths_dfs = dfs.depth_first_search(starting_node)
    print("DEPTH FIRST SEARCH")
    print("Number of Hamilton Cycles found:", len(paths_dfs))
    print("Shortest path:", graph.get_shortest_path(paths_dfs), end="\n\n")

    bfs = BFS(graph)
    paths_bfs = bfs.breadth_first_search(starting_node)
    print("BREADTH FIRST SEARCH")
    print("Number of Hamilton Cycles found:", len(paths_bfs))
    print("Shortest path:", graph.get_shortest_path(paths_bfs), end="\n\n")

    greedy = Greedy(graph)
    path_greedy = greedy.greedy_approach(starting_node)
    print("GREEDY APPROACH")
    print("Path length:",
          (path_greedy, graph.calculate_path_length(path_greedy)),
          end="\n\n")

    a_star_custom = AStarCustom(graph)
    path_a_star = a_star_custom.a_star(starting_node)
    print("A* APPROACH")
    print("Path length:",
          (path_a_star, graph.calculate_path_length(path_a_star)),
          end="\n")

    print("{:-^100}".format(" END OF TEST "), end="\n\n")
예제 #13
0
def find_path(source, target, graph):
    def target_check(u, v):
        return v == target

    parent = DFS(graph=graph, root=source, check_terminate=target_check)
    print("Parent: ", parent)
    path = [target]
    cur_country = target
    while parent[cur_country] is not None:
        parent_country = parent[cur_country]
        path.append(parent_country)
        cur_country = parent_country
    path.reverse()
    return path
예제 #14
0
class TestDFS(unittest.TestCase):
    def setUp(self):
        self.dfs = DFS()
        self.graph = Graph()
        self.graph.insert_edge(create_edge(0, 1, 10))
        self.graph.insert_edge(create_edge(1, 3, 10))
        self.graph.insert_edge(create_edge(0, 2, 20))
        self.graph.insert_edge(create_edge(0, 3, 30))
        self.graph.insert_edge(create_edge(2, 3, 60))
        self.graph.insert_edge(create_edge(3, 4, 120))

    def test_dfs(self):
        result = self.dfs.dfs(0, self.graph)
        expected = [0, 1, 3, 2, 4]
        self.assertEqual(expected, result)
예제 #15
0
def correr_busqueda(tipo_busqueda=0):
    tablero = CMP(get_mapa_caracteres())

    if tipo_busqueda == 1:
        resultados, tablero = BFS(tablero)
    elif tipo_busqueda == 2:
        resultados, tablero = DFS(tablero)
    elif tipo_busqueda == 3:
        resultados, tablero = IDS(tablero)
    elif tipo_busqueda == 0:
        print("No se envio el parametro tipo de busqueda")
        exit()
    else:
        print("No se envio un tipo de busqueda correcto")
        exit()

    return resultados, tablero
예제 #16
0
def next_direction(data, board, destination, current_pos, health_flag):
    # print 'data:' , data
    print('turn: ', data['turn'])
    print('current pos: ', current_pos)
    # direction = data['turn']
    health = data['you']['health']
    direction = 'up'
    next_pos = DFS(current_pos, destination, board, health_flag)
    if (next_pos is None):
        return None
    print('next pos: ', next_pos)
    if next_pos[0] == current_pos[0]:
        direction = ('up' if next_pos[1] < current_pos[1] else 'down')
    if next_pos[1] == current_pos[1]:
        direction = ('left' if next_pos[0] < current_pos[0] else 'right')

    return direction
예제 #17
0
 def run(self):
   if self.algorithm == "DFS":
     self.solution = DFS.run(self.source, self.destinations)
     if self.solution is not None:
       self.end_time = self.start_time + len(self.solution) - 1
       self.end_time = self.end_time % 24
   elif self.algorithm == "BFS":
     self.solution = BFS.run(self.source, self.destinations)
     if self.solution is not None:
       self.end_time = self.start_time + len(self.solution) - 1
       self.end_time = self.end_time % 24
   elif self.algorithm == "UCS":
     self.solution = UCS.run(self.start_time, self.source, self.destinations)
     if self.solution is not None:
       self.end_time = self.solution.pop(0)
   else:
     raise Exception("Unexpected Algorithm = " + self.algorithm)
예제 #18
0
class TestDepthFirstSearch(unittest.TestCase):

    def setUp(self):
        self.dfs = DFS(ROMENIA, start='Arad')

    def test_dfs_search_success(self):
        self.assertEqual('Bucharest', self.dfs.search('Bucharest'))

    def test_dfs_search_failure(self):
        target = 'Catalao'
        expected = '{0} Not Found'.format(target)
        self.assertEqual(expected, self.dfs.search(target))

    def test_get_path_success(self):
        path_expected = ['Arad', 'Sibiu', 'Rimnicu Vilcea', 'Pitesti',
                        'Craiova', 'Dobreta', 'Mehadia', 'Lugoj', 'Timisoara']
        self.dfs.search('Bucharest')
        self.assertEqual(path_expected, self.dfs.get_path())

    def test_get_cost_success(self):
        self.dfs.search('Bucharest')
        self.assertEqual(9, self.dfs.cost())
예제 #19
0
def run():
    label_find_the_result.config(text="Result:")
    label_time.config(text="Time:")
    label_steps.config(text="Steps:")
    btn_run.config(state=tk.DISABLED)
    btn_reset.config(state=tk.DISABLED)
    radio_dfs.config(state=tk.DISABLED)
    radio_bfs.config(state=tk.DISABLED)
    radio_bestfs.config(state=tk.DISABLED)
    radio_hc.config(state=tk.DISABLED)

    algorithm = alg.get()
    res = ""
    steps = 0
    time_start = time.time()
    if algorithm == 1:
        res = DFS.solve(puzzle_in, window)
        print("DFS: ", res)
    elif algorithm == 2:
        res = BFS.solve(puzzle_in, window)
        print("BFS: ", res)
    elif algorithm == 3:
        res = BestFirstSearch.solve(puzzle_in, window)
        print("Best First Search: ", res)
    elif algorithm == 4:
        res = HillClimbing.solve(puzzle_in, window)
        print("Hill Climbing: ", res)
    time_end = time.time()
    if res is None:
        solution = "No!"
    else:
        solution = "Yes!"
        steps = len(res)
    output(solution, time_end - time_start, steps)
    btn_run.config(state=tk.NORMAL)
    btn_reset.config(state=tk.NORMAL)
    radio_dfs.config(state=tk.NORMAL)
    radio_bfs.config(state=tk.NORMAL)
    radio_bestfs.config(state=tk.NORMAL)
    radio_hc.config(state=tk.NORMAL)
예제 #20
0
# row = int(input('Enter number of Rows (Must be > 1): '))
row = 2
# col  int(input('Enter number of Columns (Must be > 1): '))
col = 3
puzzel = GameController.create_puzzle(row, col)

puzzel = GameController.scramble(puzzel)

# puzzel = [[' 0 ', ' 0 ', ' 0 '], [' 1 ', ' 0 ', ' 1 ']]

puzzelorg = deepcopy(puzzel)
puzzeldfs = deepcopy(puzzel)

# -------------------------------------------------------------------------
# uncomment this block to use the dfs_ai search algorithm
moves = DFS.perform(puzzel, row, col)

# uncomment to use the A* search
# moves =  AStar.perform(puzzel, row,col)

# uncomment to use the BFS
# moves = BFS.perform(puzzel, row, col)
# -------------------------------------------------------------------------

print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")

for r in puzzelorg:
    print("".join(r))

print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
for move in moves:
예제 #21
0
파일: main.py 프로젝트: muneebshahid/MAS
__author__ = 'muneeb'

from node import Node
from ids import IDS
from dfs import DFS
from bfs import BFS
from graph_generator import  Graph_Generator
import copy
start = "1"
goal = "15"
g = Graph_Generator(8000)
graph = g.generate_graph()

ids = IDS(copy.deepcopy(graph), start, goal)
bfs = BFS(copy.deepcopy(graph), start, goal)
dfs = DFS(copy.deepcopy(graph), start, goal)

ids.walk()
bfs.walk()
dfs.walk()

예제 #22
0
def try_all_approaches(num_of_samples: int, num_of_nodes: int):
    """
        Execute all approaches on the same graphs for given number of nodes and samples (the more samples the more
        statistically accurate results).
            Returns: Achieved path lengths and execution times for all approaches.
    """
    graph = Graph(0)

    dfs = DFS(graph)
    dfs_path_lengths = []
    dfs_execution_times = []

    bfs = BFS(graph)
    bfs_path_lengths = []
    bfs_execution_times = []

    greedy = Greedy(graph)
    greedy_path_lengths = []
    greedy_execution_times = []

    a_star_custom = AStarCustom(graph)
    a_star_path_lengths = []
    a_star_execution_times = []
    for i in range(a_star_custom.num_of_heuristics):
        a_star_path_lengths.append([])
        a_star_execution_times.append([])

    for j in range(num_of_samples):
        graph = Graph(num_of_nodes)
        starting_node = next(iter(graph.graph))

        start = time.time()
        dfs.graph = graph
        paths_dfs = dfs.depth_first_search(starting_node)
        dfs_path_lengths.append(Graph.get_shortest_path(paths_dfs)[1])
        execution_time = time.time() - start
        dfs_execution_times.append(execution_time)

        start = time.time()
        bfs.graph = graph
        paths_bfs = bfs.breadth_first_search(starting_node)
        bfs_path_lengths.append(Graph.get_shortest_path(paths_bfs)[1])
        execution_time = time.time() - start
        bfs_execution_times.append(execution_time)

        start = time.time()
        greedy.graph = graph
        path_greedy = greedy.greedy_approach(starting_node)
        greedy_path_lengths.append(Graph.calculate_path_length(path_greedy))
        execution_time = time.time() - start
        greedy_execution_times.append(execution_time)

        for i in range(a_star_custom.num_of_heuristics):
            start = time.time()
            a_star_custom.graph = graph
            a_star_custom.heuristic_choice = i
            path_a_star = a_star_custom.a_star(starting_node)
            execution_time = time.time() - start
            a_star_path_lengths[i].append(
                Graph.calculate_path_length(path_a_star))
            a_star_execution_times[i].append(execution_time)

    dfs_avg_results = sum(dfs_path_lengths) / num_of_samples, sum(
        dfs_execution_times) / num_of_nodes, "DFS Recurrent"
    bfs_avg_results = sum(bfs_path_lengths) / num_of_samples, sum(
        bfs_execution_times) / num_of_nodes, "BFS"
    greedy_avg_results = sum(greedy_path_lengths) / num_of_samples, sum(
        greedy_execution_times) / num_of_nodes, "Greedy"
    a_star_avg_results = []
    for i in range(a_star_custom.num_of_heuristics):
        label = "A* heuristic " + str(i)
        a_star_avg_results.append(
            (sum(a_star_path_lengths[i]) / num_of_samples,
             sum(a_star_execution_times[i]) / num_of_samples, label))

    data = [dfs_avg_results, bfs_avg_results, greedy_avg_results]
    data.extend(a_star_avg_results)

    return data
예제 #23
0
from state import State
from bfs import BFS
from dfs import DFS

SEARCH_TYPE = sys.argv[1]
INITIAL_STATE = map(int, sys.argv[2].split(','))

game = State(INITIAL_STATE);

search = None

if SEARCH_TYPE == 'bfs':
    search = BFS(game)
if SEARCH_TYPE == 'dfs':
    search = DFS(game)

result = search.perform_search()
goal_pos = result.position

res = resource.getrusage(resource.RUSAGE_SELF)

def trace_path(goal_pos):
    pos = goal_pos
    path = []

    while pos != None:
        if (pos.node.action != None):
            path.append(pos.node.action)
        pos = pos.prev
예제 #24
0
from bestfirst import BestFirstSearch
from astar import AStarSearch
from board import heuristicOption
import time
""" 
Project 1.1: Indonesian Dot Puzzle Board Class
COMP 472 NN 
DUE: Feb 9th, 2020
Samantha Yuen (40033121), Andrew Marcos (40011252), Michael Gagnon (40030481) 

This file is responsible for starting all three searches on the board test file.
"""

filename = input("Enter filename with board setup:")
listOfBoards = returnBoards(filename)
dfs = DFS()
bfs = BestFirstSearch()
afs = AStarSearch()

for board in listOfBoards:
    #input('enter to continue')
    start_time = time.time()
    dfs.dfsSearch(board)
    print("--- Board #%s finished in %s seconds for dfs ---" %
          (board.num, time.time() - start_time))
    start_time = time.time()
    bfs.bestFirstSearch(board)
    print(
        "--- Board #%s finished in %s seconds for bfs with heuristic %s ---" %
        (board.num, time.time() - start_time, heuristicOption))
    start_time = time.time()
예제 #25
0
# row = int(input('Enter number of Rows (Must be > 1): '))
row = 2
# col  int(input('Enter number of Columns (Must be > 1): '))
col = 3
puzzel = GameController.create_puzzle(row, col)

puzzel = GameController.scramble(puzzel)

# puzzel = [[' 0 ', ' 0 ', ' 0 '], [' 1 ', ' 0 ', ' 1 ']]

puzzelorg = deepcopy(puzzel)
puzzeldfs = deepcopy(puzzel)

# -------------------------------------------------------------------------
# uncomment this block to use the dfs_ai search algorithm
moves = DFS.perform(puzzel, row, col)

# uncomment to use the A* search
# moves =  AStar.perform(puzzel, row,col)

# uncomment to use the BFS
# moves = BFS.perform(puzzel, row, col)
# -------------------------------------------------------------------------


print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")

for r in puzzelorg:
    print("".join(r))

print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
예제 #26
0
def solveDFS(rubik):
    aux = time.time()
    solution_DFS = DFS.search(rubik, lambda x: x == RubikPuzzle())
    time["DFS: "](time.time() - aux) * 1000
    aux = 0
    return solution_DFS
예제 #27
0
 def test_dfs(self):
     agent = DFS()
     steps = agent.search([1, 2, 5, 3, 4, 0, 6, 7, 8])
     print("Solved in {} steps".format(len(steps)))
     print(steps)
예제 #28
0
    for line in txtFile.splitlines():
        try:
            if line[1] == ',':
                if len(playerPositions) == 0:
                    playerPositions.append(int(line[0]))
                    playerPositions.append(int(line[2]))
                else:
                    boxPositions.append([int(line[0]), int(line[2])])
            else:
                j = 0
                temp = []
                for a in line.replace('\n', ''):
                    temp.append(a)
                    if a == 'X':
                        goals.append([i, j])
                    j += 1
                gameTable.append(temp)
            i += 1

        except IndexError:
            pass


readLevel(sys.argv[1])

print(BFS(gameTable, playerPositions, goals, boxPositions))

print(DFS(gameTable, playerPositions, goals, boxPositions))

print(IDFS(gameTable, playerPositions, goals, boxPositions))
예제 #29
0
 def setUp(self):
     self.dfs = DFS(ROMENIA, start="Arad")
예제 #30
0
from dfs import DFS
from bfs import BFS


def print_steps(steps_sol):
    for s in steps_sol:
        print("================================")
        for i in range(0, 9, 3):
            print(s[i:i + 3])


agent = DFS()
steps = agent.search([1, 2, 5, 3, 4, 0, 6, 7, 8])
print_steps(steps)

agent = BFS()
steps = agent.search([1, 2, 0, 3, 4, 5, 6, 7, 8])
print_steps(steps)
예제 #31
0
import balloon_manager
import read_input_file
from cell import Cell
from dfs import DFS
from graph2 import Graph2, Vertex2

config = read_input_file.load_configuration('test_input')
selected_targets = balloon_manager.select_targets(config)
balloons = balloon_manager.assign_balloons(config, selected_targets)

g = Graph2(config)
dfs = DFS(g, config)
for balloon in balloons:
    target_vertex = Vertex2(balloon.target_cell, 1)
    dfs.search(dfs.start_vertex, target_vertex)
    print "start_vertex: %s, target_vertex: %s" % (dfs.start_vertex, target_vertex)
    print "path found: %s" % dfs.path_found
    print "path: %s" % dfs.get_path(target_vertex)

if False:
    for r in range(config['R']):  # For all rows
        for c in range(config['C']):  # For all columns
            v = Vertex2(Cell(r, c), 2)
            adj = g.adj(v)
            print "Adjacent cells for vertex %s are: %s" % (v, adj)
예제 #32
0
 def iter_dfs(self, start_node):
     return DFS(self, start_node)
예제 #33
0
def run_tests(filepath):
    """
    runs all the tests for the program
    """
    generator = GraphGenerator(filepath)
    graph = generator.graph_from_text_file()
    # test for object references in original graph

    print "TEST: Testing object reference on original graph"
    print object_references(graph)

    dfs_1 = DFS(graph)
    dfs_1.dfs()

    # graph after first run of dfs with vertices ordered by increasing
    # finishing time.
    dfs_1.dfs_graph_from_call_stack()

    # test for object reference after first dfs run
    print "TEST: Testing object reference on dfs 1 graph"
    print object_references(dfs_1.dfs_graph)

    print "Printing DFS 1 Graph"
    print dfs_1.dfs_graph

    print "*****************************************"
    # graph after transpose of the original graph
    dfs_1_trans_graph = dfs_1.dfs_graph.transpose()

    print "Printing transpose of DFS 1 Graph"
    print dfs_1_trans_graph

    print "*****************************************"

    # # Second run of dfs on transposed graph
    dfs_2 = DFS(dfs_1_trans_graph)
    dfs_2.dfs()
    dfs_2.dfs_graph_from_call_stack()
    # test for object reference after first dfs run

    print "TEST: Testing object reference on dfs 2 graph"
    print object_references(dfs_2.dfs_graph)

    print "Printing DFS 2 Graph"
    print dfs_2.dfs_graph

    print "*****************************************"

    print "Printing DFS components"

    print "*****************************************"
    print_dfs_components(dfs_2.dfs_forest)
예제 #34
0
print("Iterator po krawedziach")
for i in dGraph.iteredges():
    print(i)

print('BFS \n')
bfs = BFS(dGraph, 2)
iter_bfs = iter(bfs)
for i in iter_bfs:
    print(i)

for i in dGraph.iter_bfs(2):
    print(i)

print("DFS \n")
dfs = DFS(dGraph, 2)
iter_dfs = iter(dfs)
for i in iter_dfs:
    print(i)

for i in dGraph.iter_dfs(2):
    print(i)

for node in dGraph:  # iterator po wierzchołkach
    print("wierzchołek", node)

for node in uGraph:  # iterator po wierzchołkach
    print("wierzchołek ", node)
    print("stopien ", len(uGraph[node]))

uGraph.__repr__()
예제 #35
0
from json import loads
from bfs import BFS
from dfs import DFS
from ids import IDS
from hc import HC

# Load tree data from file
filePath = open('./data.json')
data = filePath.read()
dataJson = loads(data)
tree = dataJson['tree']
# list of goals of DFS, DFS, IDS algorithms
goals = dataJson['goals']

hill_climb = dataJson['hill-climb']
# list of goals of HC algorithm
goals_HC = dataJson['hill-climb']['goals']
# root node
root = dataJson['root']

if __name__ == '__main__':
    DFS(tree, root, goals)
    BFS(tree, root, goals)
    IDS(tree, root, goals, 2)
    HC(hill_climb, root, goals_HC)
예제 #36
0
파일: main.py 프로젝트: muneebshahid/MAS
print "\nBFS - Map2"
world = World(Util.read_file(map2), b_map2)
bfs_search = BFS(world)
bfs_search.search()
print timeit.Timer(bfs_search.search).timeit(1)

print "\nBFS - Map3"
world = World(Util.read_file(map3), b_map3)
bfs_search = BFS(world)
bfs_search.search()
print timeit.Timer(bfs_search.search).timeit(1)

print "\nDFS - Map1"
world = World(Util.read_file(map1), d_map1)
dfs_search = DFS(world)
dfs_search.search()
print timeit.Timer(dfs_search.search).timeit(1)

print "\nDFS - Map2"
world = World(Util.read_file(map2), d_map2)
dfs_search = DFS(world)
dfs_search.search()
print timeit.Timer(dfs_search.search).timeit(1)

print "\nDFS - Map3"
world = World(Util.read_file(map3), d_map3)
dfs_search = DFS(world)
dfs_search.search()
print timeit.Timer(dfs_search.search).timeit(1)