def test_train_agent(self): # Setup Expected Response expected_response = {} expected_response = empty_pb2.Empty(**expected_response) operation = operations_pb2.Operation( name='operations/test_train_agent', done=True) operation.response.Pack(expected_response) # Mock the API response channel = ChannelStub(responses=[operation]) patch = mock.patch('google.api_core.grpc_helpers.create_channel') with patch as create_channel: create_channel.return_value = channel client = dialogflow_v2beta1.AgentsClient() # Setup Request parent = client.project_path('[PROJECT]') response = client.train_agent(parent) result = response.result() assert expected_response == result assert len(channel.requests) == 1 expected_request = agent_pb2.TrainAgentRequest(parent=parent) actual_request = channel.requests[0][1] assert expected_request == actual_request
def train_agent(self, parent, retry=google.api_core.gapic_v1.method.DEFAULT, timeout=google.api_core.gapic_v1.method.DEFAULT): """ Trains the specified agent. Operation<response: google.protobuf.Empty, metadata: google.protobuf.Struct> Example: >>> import dialogflow_v2beta1 >>> >>> client = dialogflow_v2beta1.AgentsClient() >>> >>> parent = client.project_path('[PROJECT]') >>> >>> response = client.train_agent(parent) >>> >>> def callback(operation_future): ... # Handle result. ... result = operation_future.result() >>> >>> response.add_done_callback(callback) >>> >>> # Handle metadata. >>> metadata = response.metadata() Args: parent (str): Required. The project that the agent to train is associated with. Format: ``projects/<Project ID>``. retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will not be retried. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. Returns: A :class:`~dialogflow_v2beta1.types._OperationFuture` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid. """ request = agent_pb2.TrainAgentRequest(parent=parent) operation = self._train_agent(request, retry=retry, timeout=timeout) return google.api_core.operation.from_gapic( operation, self.operations_client, empty_pb2.Empty, metadata_type=struct_pb2.Struct)
def test_train_agent(self): # Setup Expected Response expected_response = {} expected_response = empty_pb2.Empty(**expected_response) operation = operations_pb2.Operation( name='operations/test_train_agent', done=True) operation.response.Pack(expected_response) # Mock the API response channel = ChannelStub(responses=[operation]) client = dialogflow_v2beta1.AgentsClient(channel=channel) # Setup Request parent = client.project_path('[PROJECT]') response = client.train_agent(parent) result = response.result() assert expected_response == result assert len(channel.requests) == 1 expected_request = agent_pb2.TrainAgentRequest(parent=parent) actual_request = channel.requests[0][1] assert expected_request == actual_request
def train_agent( self, parent, retry=google.api_core.gapic_v1.method.DEFAULT, timeout=google.api_core.gapic_v1.method.DEFAULT, metadata=None, ): """ Trains the specified agent. Operation <response: ``google.protobuf.Empty``> Example: >>> import dialogflow_v2beta1 >>> >>> client = dialogflow_v2beta1.AgentsClient() >>> >>> parent = client.project_path('[PROJECT]') >>> >>> response = client.train_agent(parent) >>> >>> def callback(operation_future): ... # Handle result. ... result = operation_future.result() >>> >>> response.add_done_callback(callback) >>> >>> # Handle metadata. >>> metadata = response.metadata() Args: parent (str): Required. The project that the agent to train is associated with. Format: ``projects/<Project ID>``. retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will be retried using a default configuration. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Returns: A :class:`~google.cloud.dialogflow_v2beta1.types._OperationFuture` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid. """ # Wrap the transport method to add retry and timeout logic. if "train_agent" not in self._inner_api_calls: self._inner_api_calls[ "train_agent"] = google.api_core.gapic_v1.method.wrap_method( self.transport.train_agent, default_retry=self._method_configs["TrainAgent"].retry, default_timeout=self._method_configs["TrainAgent"].timeout, client_info=self._client_info, ) request = agent_pb2.TrainAgentRequest(parent=parent) if metadata is None: metadata = [] metadata = list(metadata) try: routing_header = [("parent", parent)] except AttributeError: pass else: routing_metadata = google.api_core.gapic_v1.routing_header.to_grpc_metadata( routing_header) metadata.append(routing_metadata) operation = self._inner_api_calls["train_agent"](request, retry=retry, timeout=timeout, metadata=metadata) return google.api_core.operation.from_gapic( operation, self.transport._operations_client, empty_pb2.Empty, metadata_type=struct_pb2.Struct, )