def setup(dials_data): from dials.algorithms.profile_model.gaussian_rs import BBoxCalculator3D from dials.model.serialize import load sequence = load.sequence( dials_data("centroid_test_data").join("sweep.json").strpath) fixture = {} # Get the models fixture["beam"] = sequence.get_beam() fixture["detector"] = sequence.get_detector() fixture["gonio"] = sequence.get_goniometer() fixture["scan"] = sequence.get_scan() # Set the delta_divergence/mosaicity n_sigma = 5 sigma_divergence = 0.060 * math.pi / 180 mosaicity = 0.154 * math.pi / 180 fixture["delta_divergence"] = n_sigma * sigma_divergence fixture["delta_mosaicity"] = n_sigma * mosaicity # Create the bounding box calculator fixture["calculate_bbox"] = BBoxCalculator3D( fixture["beam"], fixture["detector"], fixture["gonio"], fixture["scan"], fixture["delta_divergence"], fixture["delta_mosaicity"], ) return fixture
def setup(dials_data): sequence = load.imageset( dials_data("centroid_test_data").join("sweep.json").strpath ) fixture = {} # Get the models fixture["beam"] = sequence.get_beam() fixture["detector"] = sequence.get_detector() fixture["gonio"] = sequence.get_goniometer() fixture["scan"] = sequence.get_scan() # Set the delta_divergence/mosaicity n_sigma = 5 sigma_divergence = 0.060 * math.pi / 180 mosaicity = 0.154 * math.pi / 180 fixture["delta_divergence"] = n_sigma * sigma_divergence fixture["delta_mosaicity"] = n_sigma * mosaicity # Create the bounding box calculator fixture["calculate_bbox"] = BBoxCalculator3D( fixture["beam"], fixture["detector"], fixture["gonio"], fixture["scan"], fixture["delta_divergence"], fixture["delta_mosaicity"], ) return fixture
def __init__(self, filename): from math import pi from dials.model.serialize import load from dials.algorithms.profile_model.gaussian_rs.transform import MapFramesReverse from dials.algorithms.profile_model.gaussian_rs.transform import MapFramesForward from dials.algorithms.profile_model.gaussian_rs import BBoxCalculator3D # Load the sweep self.sweep = load.sweep(filename) # Get the models self.beam = self.sweep.get_beam() self.detector = self.sweep.get_detector() self.gonio = self.sweep.get_goniometer() self.scan = self.sweep.get_scan() # Set the delta_divergence/mosaicity self.n_sigma = 3 self.sigma_divergence = 0.060 * pi / 180 self.mosaicity = 0.154 * pi / 180 self.delta_divergence = self.n_sigma * self.sigma_divergence self.delta_mosaicity = self.n_sigma * self.mosaicity # Set the grid size self.grid_size = (4, 4, 4) # Create the E3 fraction object self.transform_forward = MapFramesForward( self.scan.get_array_range()[0], self.scan.get_oscillation(deg=False)[0], self.scan.get_oscillation(deg=False)[1], self.mosaicity, self.n_sigma, self.grid_size[2]) # Create the E3 fraction object self.transform_reverse = MapFramesReverse( self.scan.get_array_range()[0], self.scan.get_oscillation(deg=False)[0], self.scan.get_oscillation(deg=False)[1], self.mosaicity, self.n_sigma, self.grid_size[2]) # Create the bounding box calculator self.calculate_bbox = BBoxCalculator3D( self.beam, self.detector, self.gonio, self.scan, self.delta_divergence, self.delta_mosaicity)
def __init__(self, filename): from dials.model.serialize import load from dials.algorithms.profile_model.gaussian_rs import transform from dials.algorithms.profile_model.gaussian_rs import BBoxCalculator3D from math import pi # Load the sweep self.sweep = load.sweep(filename) # Get the models self.beam = self.sweep.get_beam() self.detector = self.sweep.get_detector() self.gonio = self.sweep.get_goniometer() self.scan = self.sweep.get_scan() self.scan.set_image_range((0, 1000)) # self.beam.set_direction((0.0, 0.0, 1.0)) # self.gonio.set_rotation_axis((1.0, 0.0, 0.0)) # self.detector.set_frame((1.0, 0.0, 0.0), # (0.0, 1.0, 0.0), # (-150, -150, -200)) # Set some parameters self.sigma_divergence = self.beam.get_sigma_divergence(deg=False) self.mosaicity = 0.157 * pi / 180 self.n_sigma = 3 self.grid_size = 20 self.delta_divergence = self.n_sigma * self.sigma_divergence step_size = self.delta_divergence / self.grid_size self.delta_divergence2 = self.delta_divergence + step_size * 0.5 self.delta_mosaicity = self.n_sigma * self.mosaicity # Create the bounding box calculator self.calculate_bbox = BBoxCalculator3D(self.beam, self.detector, self.gonio, self.scan, self.delta_divergence2, self.delta_mosaicity) # Initialise the transform self.spec = transform.TransformSpec(self.beam, self.detector, self.gonio, self.scan, self.sigma_divergence, self.mosaicity, self.n_sigma + 1, self.grid_size)
class Test(object): def __init__(self): from dials.algorithms.profile_model.gaussian_rs import BBoxCalculator3D from dials.model.serialize import load from math import pi import libtbx.load_env try: dials_regression = libtbx.env.dist_path('dials_regression') except KeyError, e: print 'FAIL: dials_regression not configured' exit(0) import os filename = os.path.join(dials_regression, 'centroid_test_data', 'sweep.json') sweep = load.sweep(filename) # Get the models self.beam = sweep.get_beam() self.detector = sweep.get_detector() self.gonio = sweep.get_goniometer() self.scan = sweep.get_scan() # Set the delta_divergence/mosaicity self.n_sigma = 5 self.sigma_divergence = 0.060 * pi / 180 self.mosaicity = 0.154 * pi / 180 self.delta_divergence = self.n_sigma * self.sigma_divergence self.delta_mosaicity = self.n_sigma * self.mosaicity # Create the bounding box calculator self.calculate_bbox = BBoxCalculator3D(self.beam, self.detector, self.gonio, self.scan, self.delta_divergence, self.delta_mosaicity)
def test_forward(dials_data): sequence = load.imageset( dials_data("centroid_test_data").join("sweep.json").strpath) # Get the models beam = sequence.get_beam() detector = sequence.get_detector() gonio = sequence.get_goniometer() scan = sequence.get_scan() # Set some parameters sigma_divergence = beam.get_sigma_divergence(deg=False) mosaicity = 0.157 * math.pi / 180 n_sigma = 3 grid_size = 7 delta_divergence = n_sigma * sigma_divergence step_size = delta_divergence / grid_size delta_divergence2 = delta_divergence + step_size * 0.5 delta_mosaicity = n_sigma * mosaicity # Create the bounding box calculator calculate_bbox = BBoxCalculator3D(beam, detector, gonio, scan, delta_divergence2, delta_mosaicity) # Initialise the transform spec = transform.TransformSpec(beam, detector, gonio, scan, sigma_divergence, mosaicity, n_sigma + 1, grid_size) # tst_conservation_of_counts(self): assert len(detector) == 1 s0 = beam.get_s0() m2 = gonio.get_rotation_axis() s0_length = matrix.col(beam.get_s0()).length() # Create an s1 map s1_map = transform.beam_vector_map(detector[0], beam, True) for i in range(100): # Get random x, y, z x = random.uniform(300, 1800) y = random.uniform(300, 1800) z = random.uniform(0, 9) # Get random s1, phi, panel s1 = matrix.col(detector[0].get_pixel_lab_coord( (x, y))).normalize() * s0_length phi = scan.get_angle_from_array_index(z, deg=False) panel = 0 # Calculate the bounding box bbox = calculate_bbox(s1, z, panel) x0, x1, y0, y1, z0, z1 = bbox # Create the coordinate system cs = CoordinateSystem(m2, s0, s1, phi) # The grid index generator step_size = delta_divergence / grid_size grid_index = transform.GridIndexGenerator(cs, x0, y0, (step_size, step_size), grid_size, s1_map) # Create the image # image = flex.double(flex.grid(z1 - z0, y1 - y0, x1 - x0), 1) image = gaussian((z1 - z0, y1 - y0, x1 - x0), 10.0, (z - z0, y - y0, x - x0), (2.0, 2.0, 2.0)) mask = flex.bool(flex.grid(image.all()), False) for j in range(y1 - y0): for i in range(x1 - x0): inside = False gx00, gy00 = grid_index(j, i) gx01, gy01 = grid_index(j, i + 1) gx10, gy10 = grid_index(j + 1, i) gx11, gy11 = grid_index(j + 1, i + 1) mingx = min([gx00, gx01, gx10, gx11]) maxgx = max([gx00, gx01, gx10, gx11]) mingy = min([gy00, gy01, gy10, gy11]) maxgy = max([gy00, gy01, gy10, gy11]) if (mingx >= 0 and maxgx < 2 * grid_size + 1 and mingy >= 0 and maxgy < 2 * grid_size + 1): inside = True for k in range(1, z1 - z0 - 1): mask[k, j, i] = inside # Transform the image to the grid transformed = transform.TransformForward(spec, cs, bbox, 0, image.as_double(), mask) grid = transformed.profile() # Get the sums and ensure they're the same eps = 1e-7 sum_grid = flex.sum(grid) sum_image = flex.sum(flex.double(flex.select(image, flags=mask))) assert abs(sum_grid - sum_image) <= eps # Test passed # tst_transform_with_background(self): assert len(detector) == 1 s0 = beam.get_s0() m2 = gonio.get_rotation_axis() s0_length = matrix.col(beam.get_s0()).length() # Create an s1 map s1_map = transform.beam_vector_map(detector[0], beam, True) for i in range(100): # Get random x, y, z x = random.uniform(300, 1800) y = random.uniform(300, 1800) z = random.uniform(0, 9) # Get random s1, phi, panel s1 = matrix.col(detector[0].get_pixel_lab_coord( (x, y))).normalize() * s0_length phi = scan.get_angle_from_array_index(z, deg=False) panel = 0 # Calculate the bounding box bbox = calculate_bbox(s1, z, panel) x0, x1, y0, y1, z0, z1 = bbox # Create the coordinate system cs = CoordinateSystem(m2, s0, s1, phi) # The grid index generator step_size = delta_divergence / grid_size grid_index = transform.GridIndexGenerator(cs, x0, y0, (step_size, step_size), grid_size, s1_map) # Create the image # image = flex.double(flex.grid(z1 - z0, y1 - y0, x1 - x0), 1) image = gaussian((z1 - z0, y1 - y0, x1 - x0), 10.0, (z - z0, y - y0, x - x0), (2.0, 2.0, 2.0)) background = flex.random_double(len(image)) background.resize(image.accessor()) mask = flex.bool(flex.grid(image.all()), False) for j in range(y1 - y0): for i in range(x1 - x0): inside = False gx00, gy00 = grid_index(j, i) gx01, gy01 = grid_index(j, i + 1) gx10, gy10 = grid_index(j + 1, i) gx11, gy11 = grid_index(j + 1, i + 1) mingx = min([gx00, gx01, gx10, gx11]) maxgx = max([gx00, gx01, gx10, gx11]) mingy = min([gy00, gy01, gy10, gy11]) maxgy = max([gy00, gy01, gy10, gy11]) if (mingx >= 0 and maxgx <= 2 * grid_size + 1 and mingy >= 0 and maxgy <= 2 * grid_size + 1): inside = True for k in range(1, z1 - z0 - 1): mask[k, j, i] = inside # Transform the image to the grid transformed = transform.TransformForward(spec, cs, bbox, 0, image.as_double(), background.as_double(), mask) igrid = transformed.profile() bgrid = transformed.background() # Get the sums and ensure they're the same eps = 1e-7 sum_igrid = flex.sum(igrid) sum_bgrid = flex.sum(bgrid) sum_image = flex.sum(flex.double(flex.select(image, flags=mask))) sum_bkgrd = flex.sum(flex.double(flex.select(background, flags=mask))) try: assert abs(sum_igrid - sum_image) <= eps assert abs(sum_bgrid - sum_bkgrd) <= eps except Exception: print("Failed for: ", (x, y, z)) raise
def test_forward_no_model(dials_data): sequence = load.imageset( dials_data("centroid_test_data").join("sweep.json").strpath) # Get the models beam = sequence.get_beam() detector = sequence.get_detector() gonio = sequence.get_goniometer() scan = sequence.get_scan() scan.set_image_range((0, 1000)) # Set some parameters sigma_divergence = beam.get_sigma_divergence(deg=False) mosaicity = 0.157 * math.pi / 180 n_sigma = 3 grid_size = 20 delta_divergence = n_sigma * sigma_divergence step_size = delta_divergence / grid_size delta_divergence2 = delta_divergence + step_size * 0.5 delta_mosaicity = n_sigma * mosaicity # Create the bounding box calculator calculate_bbox = BBoxCalculator3D(beam, detector, gonio, scan, delta_divergence2, delta_mosaicity) # Initialise the transform spec = transform.TransformSpec(beam, detector, gonio, scan, sigma_divergence, mosaicity, n_sigma + 1, grid_size) # tst_conservation_of_counts(self): random.seed(0) assert len(detector) == 1 s0 = beam.get_s0() m2 = gonio.get_rotation_axis() s0_length = matrix.col(beam.get_s0()).length() # Create an s1 map s1_map = transform.beam_vector_map(detector[0], beam, True) for i in range(100): # Get random x, y, z x = random.uniform(300, 1800) y = random.uniform(300, 1800) z = random.uniform(500, 600) # Get random s1, phi, panel s1 = matrix.col(detector[0].get_pixel_lab_coord( (x, y))).normalize() * s0_length phi = scan.get_angle_from_array_index(z, deg=False) panel = 0 # Calculate the bounding box bbox = calculate_bbox(s1, z, panel) x0, x1, y0, y1, z0, z1 = bbox # Create the coordinate system cs = CoordinateSystem(m2, s0, s1, phi) if abs(cs.zeta()) < 0.1: continue # The grid index generator step_size = delta_divergence / grid_size grid_index = transform.GridIndexGenerator(cs, x0, y0, (step_size, step_size), grid_size, s1_map) # Create the image # image = flex.double(flex.grid(z1 - z0, y1 - y0, x1 - x0), 1) image = gaussian((z1 - z0, y1 - y0, x1 - x0), 10.0, (z - z0, y - y0, x - x0), (2.0, 2.0, 2.0)) mask = flex.bool(flex.grid(image.all()), False) for j in range(y1 - y0): for i in range(x1 - x0): inside = False gx00, gy00 = grid_index(j, i) gx01, gy01 = grid_index(j, i + 1) gx10, gy10 = grid_index(j + 1, i) gx11, gy11 = grid_index(j + 1, i + 1) mingx = min([gx00, gx01, gx10, gx11]) maxgx = max([gx00, gx01, gx10, gx11]) mingy = min([gy00, gy01, gy10, gy11]) maxgy = max([gy00, gy01, gy10, gy11]) if (mingx >= 0 and maxgx < 2 * grid_size + 1 and mingy >= 0 and maxgy < 2 * grid_size + 1): inside = True for k in range(1, z1 - z0 - 1): mask[k, j, i] = inside # Transform the image to the grid transformed = transform.TransformForwardNoModel( spec, cs, bbox, 0, image.as_double(), mask) grid = transformed.profile() # Get the sums and ensure they're the same eps = 1e-7 sum_grid = flex.sum(grid) sum_image = flex.sum(flex.double(flex.select(image, flags=mask))) assert abs(sum_grid - sum_image) <= eps mask = flex.bool(flex.grid(image.all()), True) transformed = transform.TransformForwardNoModel( spec, cs, bbox, 0, image.as_double(), mask) grid = transformed.profile() # Boost the bbox to make sure all intensity is included x0, x1, y0, y1, z0, z1 = bbox bbox2 = (x0 - 10, x1 + 10, y0 - 10, y1 + 10, z0 - 10, z1 + 10) # Do the reverse transform transformed = transform.TransformReverseNoModel( spec, cs, bbox2, 0, grid) image2 = transformed.profile() # Check the sum of pixels are the same sum_grid = flex.sum(grid) sum_image = flex.sum(image2) assert abs(sum_grid - sum_image) <= eps # Do the reverse transform transformed = transform.TransformReverseNoModel( spec, cs, bbox, 0, grid) image2 = transformed.profile() from dials.algorithms.statistics import pearson_correlation_coefficient cc = pearson_correlation_coefficient(image.as_1d().as_double(), image2.as_1d()) assert cc >= 0.99
def test_map_forward_reverse(dials_data): sequence = load.imageset( dials_data("centroid_test_data").join("sweep.json").strpath) # Get the models beam = sequence.get_beam() detector = sequence.get_detector() gonio = sequence.get_goniometer() scan = sequence.get_scan() # Set the delta_divergence/mosaicity n_sigma = 3 sigma_divergence = 0.060 * math.pi / 180 mosaicity = 0.154 * math.pi / 180 delta_divergence = n_sigma * sigma_divergence delta_mosaicity = n_sigma * mosaicity # Set the grid size grid_size = (4, 4, 4) # Create the E3 fraction object transform_forward = MapFramesForward( scan.get_array_range()[0], scan.get_oscillation(deg=False)[0], scan.get_oscillation(deg=False)[1], mosaicity, n_sigma, grid_size[2], ) # Create the E3 fraction object transform_reverse = MapFramesReverse( scan.get_array_range()[0], scan.get_oscillation(deg=False)[0], scan.get_oscillation(deg=False)[1], mosaicity, n_sigma, grid_size[2], ) # Create the bounding box calculator calculate_bbox = BBoxCalculator3D(beam, detector, gonio, scan, delta_divergence, delta_mosaicity) s0 = beam.get_s0() m2 = gonio.get_rotation_axis() s0_length = matrix.col(beam.get_s0()).length() for i in range(100): # Get random x, y, z x = random.uniform(0, 2000) y = random.uniform(0, 2000) z = random.uniform(0, 9) # Get random s1, phi, panel s1 = matrix.col(detector[0].get_pixel_lab_coord( (x, y))).normalize() * s0_length phi = scan.get_angle_from_array_index(z, deg=False) panel = 0 # Calculate the bounding box bbox = calculate_bbox(s1, phi, panel) # Create the XDS coordinate system xcs = CoordinateSystem(m2, s0, s1, phi) # Calculate the transform fraction forward_fraction = transform_forward(bbox[4:], phi, xcs.zeta()) # Calculate the transform fraction reverse_fraction = transform_reverse(bbox[4:], phi, xcs.zeta()) # Check the same points are non-zero eps = 1e-7 for j in range(forward_fraction.all()[0]): for i in range(forward_fraction.all()[1]): if forward_fraction[j, i] > 0.0: assert reverse_fraction[i, j] > 0.0 else: assert reverse_fraction[i, j] < eps
def test_map_frames_forward(dials_data): sequence = load.imageset( dials_data("centroid_test_data").join("sweep.json").strpath) # Get the models beam = sequence.get_beam() detector = sequence.get_detector() gonio = sequence.get_goniometer() scan = sequence.get_scan() # Set the delta_divergence/mosaicity n_sigma = 3 sigma_divergence = 0.060 * math.pi / 180 mosaicity = 0.154 * math.pi / 180 delta_divergence = n_sigma * sigma_divergence delta_mosaicity = n_sigma * mosaicity # Set the grid size grid_size = (4, 4, 4) # Create the E3 fraction object transform = MapFramesForward( scan.get_array_range()[0], scan.get_oscillation(deg=False)[0], scan.get_oscillation(deg=False)[1], mosaicity, n_sigma, grid_size[2], ) # Create the bounding box calculator calculate_bbox = BBoxCalculator3D(beam, detector, gonio, scan, delta_divergence, delta_mosaicity) assert len(detector) == 1 s0 = beam.get_s0() m2 = gonio.get_rotation_axis() s0_length = matrix.col(beam.get_s0()).length() for i in range(100): # Get random x, y, z x = random.uniform(0, 2000) y = random.uniform(0, 2000) z = random.uniform(0, 9) # Get random s1, phi, panel s1 = matrix.col(detector[0].get_pixel_lab_coord( (x, y))).normalize() * s0_length phi = scan.get_angle_from_array_index(z, deg=False) panel = 0 # Calculate the bounding box bbox = calculate_bbox(s1, z, panel) # Create the XDS coordinate system xcs = CoordinateSystem(m2, s0, s1, phi) # Calculate the transform fraction fraction = transform(bbox[4:], phi, xcs.zeta()) # Ensure the minimum and maximum are 0 < 1 fmax = flex.max(fraction) fmin = flex.min(fraction) assert fmax <= ( 1.0 + 5e-15) and fmax > 0.0, f"{fmax:.16f} not between 0 and 1" assert fmin >= 0.0 and fmin <= 1.0 # Ensure the fraction for each image frame adds up to 1.0 for # all those frames completely within the grid for j in range(1, fraction.all()[0] - 1): tot = flex.sum(fraction[j:j + 1, :]) assert abs(tot - 1.0) < 1e-7 # Ensure the frames follow a progression through the grid. I.e, # check that values increase then decrease and don't jump around for j in range(fraction.all()[0]): f = fraction[j:j + 1, :] last = f[0] rev = False for i in range(1, len(f)): curr = f[1] if rev is False: if curr < last: rev = True else: assert curr <= last last = curr
def test_forward_panel_edge(dials_data): expt = ExperimentList.from_file( dials_data("centroid_test_data").join( "imported_experiments.json").strpath)[0] # Get the models beam = expt.beam detector = expt.detector gonio = expt.goniometer scan = expt.scan # Set some parameters sigma_divergence = 0.00101229 mosaicity = 0.157 * math.pi / 180 n_sigma = 3 grid_size = 7 delta_divergence = n_sigma * sigma_divergence step_size = delta_divergence / grid_size delta_divergence2 = delta_divergence + step_size * 0.5 delta_mosaicity = n_sigma * mosaicity # Create the bounding box calculator calculate_bbox = BBoxCalculator3D(beam, detector, gonio, scan, delta_divergence2, delta_mosaicity) # Initialise the transform spec = transform.TransformSpec(beam, detector, gonio, scan, sigma_divergence, mosaicity, n_sigma + 1, grid_size) assert len(detector) == 1 s0 = beam.get_s0() m2 = gonio.get_rotation_axis() s0_length = matrix.col(beam.get_s0()).length() image_size = detector[0].get_image_size() refl_xy = [ (0, 0), (2, 3), (4, 1000), (1000, 5), (image_size[0] - 1, image_size[1] - 1), (image_size[0] - 2, 1), (1, image_size[1] - 5), (1000, image_size[1] - 4), (image_size[0] - 3, 1000), ] for x, y in refl_xy: z = random.uniform(0, 9) # Get random s1, phi, panel s1 = matrix.col(detector[0].get_pixel_lab_coord( (x, y))).normalize() * s0_length phi = scan.get_angle_from_array_index(z, deg=False) panel = 0 # Calculate the bounding box bbox = calculate_bbox(s1, z, panel) x0, x1, y0, y1, z0, z1 = bbox # Create the coordinate system cs = CoordinateSystem(m2, s0, s1, phi) # Create the image image = gaussian((z1 - z0, y1 - y0, x1 - x0), 10.0, (z - z0, y - y0, x - x0), (2.0, 2.0, 2.0)) # Mask for the foreground pixels refl_mask = image > 1e-3 bg = flex.double(image.accessor()) # Shoebox mask, i.e. mask out pixels that are outside the panel bounds shoebox_mask = flex.bool(image.accessor(), False) for j in range(y1 - y0): for i in range(x1 - x0): if (j + y0 >= 0 and j + y0 < image_size[1] and i + x0 >= 0 and i + x0 < image_size[0]): for k in range(z1 - z0): shoebox_mask[k, j, i] = True mask = refl_mask & shoebox_mask # from matplotlib import pyplot as plt # fig, axes = plt.subplots(ncols=refl_mask.focus()[0], nrows=4) # for i in range(refl_mask.focus()[0]): # axes[0, i].imshow(image.as_numpy_array()[i]) # axes[1, i].imshow(refl_mask.as_numpy_array()[i]) # axes[2, i].imshow(shoebox_mask.as_numpy_array()[i]) # axes[3, i].imshow(mask.as_numpy_array()[i]) # plt.show() # Transform the image to the grid transformed = transform.TransformForward(spec, cs, bbox, 0, image.as_double(), bg, refl_mask) grid = transformed.profile() mask = refl_mask & shoebox_mask # assert only pixels within the panel were transformed assert flex.sum(grid) == pytest.approx(flex.sum( image.select(mask.as_1d())), rel=0.01) # The total transformed counts should be less than the (unmasked) image counts assert flex.sum(grid) < flex.sum(image) # Transform the image to the grid, this time without a background transformed = transform.TransformForward(spec, cs, bbox, 0, image.as_double(), refl_mask) grid = transformed.profile() mask = refl_mask & shoebox_mask # assert only pixels within the panel were transformed assert flex.sum(grid) == pytest.approx(flex.sum( image.select(mask.as_1d())), rel=0.01) # The total transformed counts should be less than the (unmasked) image counts assert flex.sum(grid) < flex.sum(image)
def test_forward(dials_data): from dials.model.serialize import load from dials.algorithms.profile_model.gaussian_rs import transform from dials.algorithms.profile_model.gaussian_rs import BBoxCalculator3D sweep = load.sweep( dials_data("centroid_test_data").join("sweep.json").strpath) # Get the models beam = sweep.get_beam() detector = sweep.get_detector() gonio = sweep.get_goniometer() scan = sweep.get_scan() # beam.set_direction((0.0, 0.0, 1.0)) # gonio.set_rotation_axis((1.0, 0.0, 0.0)) # detector.set_frame((1.0, 0.0, 0.0), # (0.0, 1.0, 0.0), # (-150, -150, -200)) # Set some parameters sigma_divergence = beam.get_sigma_divergence(deg=False) mosaicity = 0.157 * math.pi / 180 n_sigma = 3 grid_size = 7 delta_divergence = n_sigma * sigma_divergence step_size = delta_divergence / grid_size delta_divergence2 = delta_divergence + step_size * 0.5 delta_mosaicity = n_sigma * mosaicity # Create the bounding box calculator calculate_bbox = BBoxCalculator3D(beam, detector, gonio, scan, delta_divergence2, delta_mosaicity) # Initialise the transform spec = transform.TransformSpec(beam, detector, gonio, scan, sigma_divergence, mosaicity, n_sigma + 1, grid_size) # tst_conservation_of_counts(self): from scitbx import matrix from dials.algorithms.profile_model.gaussian_rs import CoordinateSystem from dials.algorithms.profile_model.gaussian_rs import transform from scitbx.array_family import flex assert len(detector) == 1 s0 = beam.get_s0() m2 = gonio.get_rotation_axis() s0_length = matrix.col(beam.get_s0()).length() # Create an s1 map s1_map = transform.beam_vector_map(detector[0], beam, True) for i in range(100): # Get random x, y, z x = random.uniform(300, 1800) y = random.uniform(300, 1800) z = random.uniform(0, 9) # Get random s1, phi, panel s1 = matrix.col(detector[0].get_pixel_lab_coord( (x, y))).normalize() * s0_length phi = scan.get_angle_from_array_index(z, deg=False) panel = 0 # Calculate the bounding box bbox = calculate_bbox(s1, z, panel) x0, x1, y0, y1, z0, z1 = bbox # Create the coordinate system cs = CoordinateSystem(m2, s0, s1, phi) # The grid index generator step_size = delta_divergence / grid_size grid_index = transform.GridIndexGenerator(cs, x0, y0, (step_size, step_size), grid_size, s1_map) # Create the image # image = flex.double(flex.grid(z1 - z0, y1 - y0, x1 - x0), 1) image = gaussian((z1 - z0, y1 - y0, x1 - x0), 10.0, (z - z0, y - y0, x - x0), (2.0, 2.0, 2.0)) mask = flex.bool(flex.grid(image.all()), False) for j in range(y1 - y0): for i in range(x1 - x0): inside = False gx00, gy00 = grid_index(j, i) gx01, gy01 = grid_index(j, i + 1) gx10, gy10 = grid_index(j + 1, i) gx11, gy11 = grid_index(j + 1, i + 1) mingx = min([gx00, gx01, gx10, gx11]) maxgx = max([gx00, gx01, gx10, gx11]) mingy = min([gy00, gy01, gy10, gy11]) maxgy = max([gy00, gy01, gy10, gy11]) if (mingx >= 0 and maxgx < 2 * grid_size + 1 and mingy >= 0 and maxgy < 2 * grid_size + 1): inside = True for k in range(1, z1 - z0 - 1): mask[k, j, i] = inside # Transform the image to the grid transformed = transform.TransformForward(spec, cs, bbox, 0, image.as_double(), mask) grid = transformed.profile() # Get the sums and ensure they're the same eps = 1e-7 sum_grid = flex.sum(grid) sum_image = flex.sum(flex.double(flex.select(image, flags=mask))) assert abs(sum_grid - sum_image) <= eps # Test passed # def tst_transformed_centroid(self): # from scitbx import matrix # from random import uniform # from dials.algorithms.profile_model.gaussian_rs import CoordinateSystem # from dials.algorithms.profile_model.gaussian_rs import transform # from scitbx.array_family import flex # from time import time # s0 = beam.get_s0() # m2 = gonio.get_rotation_axis() # s0_length = matrix.col(beam.get_s0()).length() # # Create an s1 map # s1_map = transform.beam_vector_map(detector, beam, True) # # Get random x, y, z # x = random.uniform(300, 1800) # y = random.uniform(300, 1800) # z = random.uniform(-10, 0) # # Get random s1, phi, panel # s1 = matrix.col(detector.get_pixel_lab_coord( # (x, y))).normalize() * s0_length # phi = scan.get_angle_from_array_index(z, deg=False) # panel = 0 # # Calculate the bounding box # bbox = calculate_bbox(s1, z, panel) # x0, x1, y0, y1, z0, z1 = bbox # # Create the coordinate system # cs = CoordinateSystem(m2, s0, s1, phi) # # The grid index generator # step_size = delta_divergence / grid_size # grid_index = transform.GridIndexGenerator(cs, x0, y0, # (step_size, step_size), grid_size, s1_map) # # Create the image # image = gaussian((z1 - z0, y1 - y0, x1 - x0), 10.0, # (z - z0, y - y0, x - x0), (2.0, 2.0, 2.0)) # print x, y, z, bbox # print (z1 - z0, y1 - y0, x1 - x0), (z - z0, y - y0, x - x0) # mask = flex.bool(flex.grid(image.all()), False) # for j in range(y1 - y0): # for i in range(x1 - x0): # inside = False # gx00, gy00 = grid_index(j, i) # gx01, gy01 = grid_index(j, i+1) # gx10, gy10 = grid_index(j+1, i) # gx11, gy11 = grid_index(j+1, i+1) # mingx = min([gx00, gx01, gx10, gx11]) # maxgx = max([gx00, gx01, gx10, gx11]) # mingy = min([gy00, gy01, gy10, gy11]) # maxgy = max([gy00, gy01, gy10, gy11]) # if (mingx >= 0 and maxgx <= 2 * grid_size + 1 and # mingy >= 0 and maxgy <= 2 * grid_size + 1): # inside = True # for k in range(1, z1 - z0 - 1): # mask[k,j,i] = inside # #image[k,j,i] *= inside # from matplotlib import pylab # pylab.imshow(image.as_numpy_array()[(z1 - z0) / 2,:,:], interpolation='none') # pylab.show() # # Transform the image to the grid # grid = transform(cs, bbox, image, mask) # from matplotlib import pylab # pylab.imshow(grid.as_numpy_array()[7,:,:], interpolation='none') # pylab.show() # # Get the sums and ensure they're the same # eps = 1e-7 # sum_grid = flex.sum(grid) # sum_image = flex.sum(flex.double(flex.select(image, flags=mask))) # assert(abs(sum_grid - sum_image) <= eps) # # Check the centroid # sz = grid_size * 2 + 1 # grid_x = flex.double(flex.grid(sz, sz, sz)) # grid_y = flex.double(flex.grid(sz, sz, sz)) # grid_z = flex.double(flex.grid(sz, sz, sz)) # for k in range(sz): # for j in range(sz): # for i in range(sz): # grid_x[k,j,i] = i + 0.5 # grid_y[k,j,i] = j + 0.5 # grid_z[k,j,i] = k + 0.5 # # sum_grid_x = flex.sum(grid * grid_x) # sum_grid_y = flex.sum(grid * grid_y) # sum_grid_z = flex.sum(grid * grid_z) # xc = sum_grid_x / sum_grid # yc = sum_grid_y / sum_grid # zc = sum_grid_z / sum_grid # print xc, yc, zc # assert(abs(xc - grid_size + 0.5) <= 0.5) # assert(abs(yc - grid_size + 0.5) <= 0.5) # assert(abs(zc - grid_size + 0.5) <= 0.5) # # Test passed # print 'OK' # tst_transform_with_background(self): from scitbx import matrix from dials.algorithms.profile_model.gaussian_rs import CoordinateSystem from dials.algorithms.profile_model.gaussian_rs import transform from scitbx.array_family import flex assert len(detector) == 1 s0 = beam.get_s0() m2 = gonio.get_rotation_axis() s0_length = matrix.col(beam.get_s0()).length() # Create an s1 map s1_map = transform.beam_vector_map(detector[0], beam, True) for i in range(100): # Get random x, y, z x = random.uniform(300, 1800) y = random.uniform(300, 1800) z = random.uniform(0, 9) # Get random s1, phi, panel s1 = matrix.col(detector[0].get_pixel_lab_coord( (x, y))).normalize() * s0_length phi = scan.get_angle_from_array_index(z, deg=False) panel = 0 # Calculate the bounding box bbox = calculate_bbox(s1, z, panel) x0, x1, y0, y1, z0, z1 = bbox # Create the coordinate system cs = CoordinateSystem(m2, s0, s1, phi) # The grid index generator step_size = delta_divergence / grid_size grid_index = transform.GridIndexGenerator(cs, x0, y0, (step_size, step_size), grid_size, s1_map) # Create the image # image = flex.double(flex.grid(z1 - z0, y1 - y0, x1 - x0), 1) image = gaussian((z1 - z0, y1 - y0, x1 - x0), 10.0, (z - z0, y - y0, x - x0), (2.0, 2.0, 2.0)) background = flex.random_double(len(image)) background.resize(image.accessor()) mask = flex.bool(flex.grid(image.all()), False) for j in range(y1 - y0): for i in range(x1 - x0): inside = False gx00, gy00 = grid_index(j, i) gx01, gy01 = grid_index(j, i + 1) gx10, gy10 = grid_index(j + 1, i) gx11, gy11 = grid_index(j + 1, i + 1) mingx = min([gx00, gx01, gx10, gx11]) maxgx = max([gx00, gx01, gx10, gx11]) mingy = min([gy00, gy01, gy10, gy11]) maxgy = max([gy00, gy01, gy10, gy11]) if (mingx >= 0 and maxgx <= 2 * grid_size + 1 and mingy >= 0 and maxgy <= 2 * grid_size + 1): inside = True for k in range(1, z1 - z0 - 1): mask[k, j, i] = inside # Transform the image to the grid transformed = transform.TransformForward(spec, cs, bbox, 0, image.as_double(), background.as_double(), mask) igrid = transformed.profile() bgrid = transformed.background() # Get the sums and ensure they're the same eps = 1e-7 sum_igrid = flex.sum(igrid) sum_bgrid = flex.sum(bgrid) sum_image = flex.sum(flex.double(flex.select(image, flags=mask))) sum_bkgrd = flex.sum(flex.double(flex.select(background, flags=mask))) try: assert abs(sum_igrid - sum_image) <= eps assert abs(sum_bgrid - sum_bkgrd) <= eps except Exception: print("Failed for: ", (x, y, z)) raise
def test_map_frames_reverse(dials_data): from dials.model.serialize import load from dials.algorithms.profile_model.gaussian_rs.transform import MapFramesReverse from dials.algorithms.profile_model.gaussian_rs import BBoxCalculator3D sequence = load.sequence( dials_data("centroid_test_data").join("sweep.json").strpath) # Get the models beam = sequence.get_beam() detector = sequence.get_detector() gonio = sequence.get_goniometer() scan = sequence.get_scan() # Set the delta_divergence/mosaicity n_sigma = 3 sigma_divergence = 0.060 * math.pi / 180 mosaicity = 0.154 * math.pi / 180 delta_divergence = n_sigma * sigma_divergence delta_mosaicity = n_sigma * mosaicity # Set the grid size grid_size = (4, 4, 4) # Create the E3 fraction object transform = MapFramesReverse( scan.get_array_range()[0], scan.get_oscillation(deg=False)[0], scan.get_oscillation(deg=False)[1], mosaicity, n_sigma, grid_size[2], ) # Create the bounding box calculator calculate_bbox = BBoxCalculator3D(beam, detector, gonio, scan, delta_divergence, delta_mosaicity) from dials.algorithms.profile_model.gaussian_rs import CoordinateSystem from scitbx.array_family import flex s0 = beam.get_s0() m2 = gonio.get_rotation_axis() s0_length = matrix.col(beam.get_s0()).length() for i in range(100): # Get random x, y, z x = random.uniform(0, 2000) y = random.uniform(0, 2000) z = random.uniform(0, 9) # Get random s1, phi, panel s1 = matrix.col(detector[0].get_pixel_lab_coord( (x, y))).normalize() * s0_length phi = scan.get_angle_from_array_index(z, deg=False) panel = 0 # Calculate the bounding box bbox = calculate_bbox(s1, phi, panel) x1, x2 = bbox[0], bbox[1] y1, y2 = bbox[2], bbox[3] z1, z2 = bbox[4], bbox[5] if x1 == 0 or y1 == 0 or z1 == 0: continue if x2 == 2000 or y2 == 2000 or z2 == 9: continue # Create the XDS coordinate system xcs = CoordinateSystem(m2, s0, s1, phi) # Calculate the transform fraction fraction = transform(bbox[4:], phi, xcs.zeta()) # Ensure the minimum and maximum are 0 < 1 fmax = flex.max(fraction) fmin = flex.min(fraction) assert fmax <= 1.0 and fmax > 0.0 assert fmin >= 0.0 and fmin <= 1.0 # Ensure the fraction for image adds up to 1.0 for # all those images completely within the image for v3 in range(fraction.all()[0]): tot = flex.sum(fraction[v3:v3 + 1, :]) assert abs(tot - 1.0) < 1e-7 # Ensure the frames follow a progression through the grid. I.e, # check that values increase then decrease and don't jump around for v3 in range(fraction.all()[0]): f = fraction[v3:v3 + 1, :] last = f[0] rev = False for i in range(1, len(f)): curr = f[1] if rev is False: if curr < last: rev = True else: assert curr <= last last = curr