def tc(): test = _Test() # Predict the reflections in place and put in a reflection manager ref_predictor = StillsExperimentsPredictor(test.stills_experiments) ref_predictor(test.reflections) test.refman = ReflectionManagerFactory.from_parameters_reflections_experiments( refman_phil_scope.extract(), test.reflections, test.stills_experiments, do_stills=True, ) test.refman.finalise() return test
def tc(): test = _Test() # Predict the reflections in place and put in a reflection manager ref_predictor = StillsExperimentsPredictor(test.stills_experiments) ref_predictor(test.reflections) test.refman = ReflectionManagerFactory.from_parameters_reflections_experiments( refman_phil_scope.extract(), test.reflections, test.stills_experiments, do_stills=True, ) test.refman.finalise() # Build a prediction parameterisation for the stills experiment test.pred_param = StillsPredictionParameterisation( test.stills_experiments, detector_parameterisations=[test.det_param], beam_parameterisations=[test.s0_param], xl_orientation_parameterisations=[test.xlo_param], xl_unit_cell_parameterisations=[test.xluc_param], ) return test
def test_stills_pred_param(tc): print("Testing derivatives for StillsPredictionParameterisation") print("========================================================") # Build a prediction parameterisation for the stills experiment pred_param = StillsPredictionParameterisation( tc.stills_experiments, detector_parameterisations=[tc.det_param], beam_parameterisations=[tc.s0_param], xl_orientation_parameterisations=[tc.xlo_param], xl_unit_cell_parameterisations=[tc.xluc_param], ) # Predict the reflections in place. Must do this ahead of calculating # the analytical gradients so quantities like s1 are correct ref_predictor = StillsExperimentsPredictor(tc.stills_experiments) ref_predictor(tc.reflections) # get analytical gradients an_grads = pred_param.get_gradients(tc.reflections) fd_grads = tc.get_fd_gradients(pred_param, ref_predictor) for i, (an_grad, fd_grad) in enumerate(zip(an_grads, fd_grads)): # compare FD with analytical calculations print(f"\nParameter {i}: {fd_grad['name']}") for name in ["dX_dp", "dY_dp", "dDeltaPsi_dp"]: print(name) a = fd_grad[name] b = an_grad[name] abs_error = a - b fns = five_number_summary(abs_error) print((" summary of absolute errors: %9.6f %9.6f %9.6f " + "%9.6f %9.6f") % fns) assert flex.max(flex.abs(abs_error)) < 0.0003 # largest absolute error found to be about 0.00025 for dY/dp of # Crystal0g_param_3. Reject outlying absolute errors and test again. iqr = fns[3] - fns[1] # skip further stats on errors with an iqr of near zero, e.g. dDeltaPsi_dp # for detector parameters, which are all equal to zero if iqr < 1.0e-10: continue sel1 = abs_error < fns[3] + 1.5 * iqr sel2 = abs_error > fns[1] - 1.5 * iqr sel = sel1 & sel2 tst = flex.max_index(flex.abs(abs_error.select(sel))) tst_val = abs_error.select(sel)[tst] n_outliers = sel.count(False) print((" {0} outliers rejected, leaving greatest " + "absolute error: {1:9.6f}").format(n_outliers, tst_val)) # largest absolute error now 0.000086 for dX/dp of Beam0Mu2 assert abs(tst_val) < 0.00009 # Completely skip parameters with FD gradients all zero (e.g. gradients of # DeltaPsi for detector parameters) sel1 = flex.abs(a) < 1.0e-10 if sel1.all_eq(True): continue # otherwise calculate normalised errors, by dividing absolute errors by # the IQR (more stable than relative error calculation) norm_error = abs_error / iqr fns = five_number_summary(norm_error) print((" summary of normalised errors: %9.6f %9.6f %9.6f " + "%9.6f %9.6f") % fns) # largest normalised error found to be about 25.7 for dY/dp of # Crystal0g_param_3. try: assert flex.max(flex.abs(norm_error)) < 30 except AssertionError as e: e.args += ( f"extreme normalised error value: {flex.max(flex.abs(norm_error))}", ) raise e # Reject outlying normalised errors and test again iqr = fns[3] - fns[1] if iqr > 0.0: sel1 = norm_error < fns[3] + 1.5 * iqr sel2 = norm_error > fns[1] - 1.5 * iqr sel = sel1 & sel2 tst = flex.max_index(flex.abs(norm_error.select(sel))) tst_val = norm_error.select(sel)[tst] n_outliers = sel.count(False) # most outliers found for for dY/dp of Crystal0g_param_3 (which had # largest errors, so no surprise there). try: assert n_outliers < 250 except AssertionError as e: e.args += (f"too many outliers rejected: {n_outliers}", ) raise e print( (" {0} outliers rejected, leaving greatest " + "normalised error: {1:9.6f}").format(n_outliers, tst_val)) # largest normalied error now about -4. for dX/dp of Detector0Tau1 assert abs(tst_val) < 6, f"should be < 6, not {tst_val}"
def test_check_and_remove(): test = _Test() # Override the single panel model and parameterisation. This test function # exercises the code for non-hierarchical multi-panel detectors. The # hierarchical detector version is tested via test_cspad_refinement.py multi_panel_detector = Detector() for x in range(3): for y in range(3): new_panel = make_panel_in_array((x, y), test.detector[0]) multi_panel_detector.add_panel(new_panel) test.detector = multi_panel_detector test.stills_experiments[0].detector = multi_panel_detector test.det_param = DetectorParameterisationMultiPanel(multi_panel_detector, test.beam) # update the generated reflections test.generate_reflections() # Predict the reflections in place and put in a reflection manager ref_predictor = StillsExperimentsPredictor(test.stills_experiments) ref_predictor(test.reflections) test.refman = ReflectionManagerFactory.from_parameters_reflections_experiments( refman_phil_scope.extract(), test.reflections, test.stills_experiments, do_stills=True, ) test.refman.finalise() # Build a prediction parameterisation for the stills experiment test.pred_param = StillsPredictionParameterisation( test.stills_experiments, detector_parameterisations=[test.det_param], beam_parameterisations=[test.s0_param], xl_orientation_parameterisations=[test.xlo_param], xl_unit_cell_parameterisations=[test.xluc_param], ) # A non-hierarchical detector does not have panel groups, thus panels are # not treated independently wrt which reflections affect their parameters. # As before, setting 792 reflections as the minimum should leave all # parameters free, and should not remove any reflections options = ar_phil_scope.extract() options.min_nref_per_parameter = 792 ar = AutoReduce(options, pred_param=test.pred_param, reflection_manager=test.refman) ar.check_and_remove() det_params = test.pred_param.get_detector_parameterisations() beam_params = test.pred_param.get_beam_parameterisations() xl_ori_params = test.pred_param.get_crystal_orientation_parameterisations() xl_uc_params = test.pred_param.get_crystal_unit_cell_parameterisations() assert det_params[0].num_free() == 6 assert beam_params[0].num_free() == 3 assert xl_ori_params[0].num_free() == 3 assert xl_uc_params[0].num_free() == 6 assert len(test.refman.get_obs()) == 823 # Setting 793 reflections as the minimum fixes 3 unit cell parameters, # and removes all those reflections. There are then too few reflections # for any parameterisation and all will be fixed, leaving no free # parameters for refinement. This fails within PredictionParameterisation, # during update so the final 31 reflections are not removed. options = ar_phil_scope.extract() options.min_nref_per_parameter = 793 ar = AutoReduce(options, pred_param=test.pred_param, reflection_manager=test.refman) with pytest.raises( DialsRefineConfigError, match="There are no free parameters for refinement" ): ar.check_and_remove() det_params = test.pred_param.get_detector_parameterisations() beam_params = test.pred_param.get_beam_parameterisations() xl_ori_params = test.pred_param.get_crystal_orientation_parameterisations() xl_uc_params = test.pred_param.get_crystal_unit_cell_parameterisations() assert det_params[0].num_free() == 0 assert beam_params[0].num_free() == 0 assert xl_ori_params[0].num_free() == 0 assert xl_uc_params[0].num_free() == 0 assert len(test.refman.get_obs()) == 823 - 792
def test(args=[]): # Python and cctbx imports from math import pi from scitbx import matrix from libtbx.phil import parse from libtbx.test_utils import approx_equal # Import for surgery on reflection_tables from dials.array_family import flex # Get module to build models using PHIL import dials.test.algorithms.refinement.setup_geometry as setup_geometry # We will set up a mock scan and a mock experiment list from dxtbx.model import ScanFactory from dxtbx.model.experiment_list import ExperimentList, Experiment # Crystal parameterisations from dials.algorithms.refinement.parameterisation.crystal_parameters import ( CrystalOrientationParameterisation, CrystalUnitCellParameterisation, ) # Symmetry constrained parameterisation for the unit cell from cctbx.uctbx import unit_cell from rstbx.symmetry.constraints.parameter_reduction import symmetrize_reduce_enlarge # Reflection prediction from dials.algorithms.spot_prediction import IndexGenerator from dials.algorithms.refinement.prediction.managed_predictors import ( ScansRayPredictor, StillsExperimentsPredictor, ) from dials.algorithms.spot_prediction import ray_intersection from cctbx.sgtbx import space_group, space_group_symbols ############################# # Setup experimental models # ############################# master_phil = parse( """ include scope dials.test.algorithms.refinement.geometry_phil include scope dials.test.algorithms.refinement.minimiser_phil """, process_includes=True, ) # build models, with a larger crystal than default in order to get enough # reflections on the 'still' image param = """ geometry.parameters.crystal.a.length.range=40 50; geometry.parameters.crystal.b.length.range=40 50; geometry.parameters.crystal.c.length.range=40 50; geometry.parameters.random_seed = 42""" models = setup_geometry.Extract(master_phil, cmdline_args=args, local_overrides=param) crystal = models.crystal mydetector = models.detector mygonio = models.goniometer mybeam = models.beam # Build a mock scan for a 1.5 degree wedge. Only used for generating indices near # the Ewald sphere sf = ScanFactory() myscan = sf.make_scan( image_range=(1, 1), exposure_times=0.1, oscillation=(0, 1.5), epochs=list(range(1)), deg=True, ) sweep_range = myscan.get_oscillation_range(deg=False) im_width = myscan.get_oscillation(deg=False)[1] assert approx_equal(im_width, 1.5 * pi / 180.0) # Build experiment lists stills_experiments = ExperimentList() stills_experiments.append( Experiment(beam=mybeam, detector=mydetector, crystal=crystal, imageset=None)) scans_experiments = ExperimentList() scans_experiments.append( Experiment( beam=mybeam, detector=mydetector, crystal=crystal, goniometer=mygonio, scan=myscan, imageset=None, )) ########################################################## # Parameterise the models (only for perturbing geometry) # ########################################################## xlo_param = CrystalOrientationParameterisation(crystal) xluc_param = CrystalUnitCellParameterisation(crystal) ################################ # Apply known parameter shifts # ################################ # rotate crystal (=5 mrad each rotation) xlo_p_vals = [] p_vals = xlo_param.get_param_vals() xlo_p_vals.append(p_vals) new_p_vals = [a + b for a, b in zip(p_vals, [5.0, 5.0, 5.0])] xlo_param.set_param_vals(new_p_vals) # change unit cell (=1.0 Angstrom length upsets, 0.5 degree of # gamma angle) xluc_p_vals = [] p_vals = xluc_param.get_param_vals() xluc_p_vals.append(p_vals) cell_params = crystal.get_unit_cell().parameters() cell_params = [ a + b for a, b in zip(cell_params, [1.0, 1.0, -1.0, 0.0, 0.0, 0.5]) ] new_uc = unit_cell(cell_params) newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose() S = symmetrize_reduce_enlarge(crystal.get_space_group()) S.set_orientation(orientation=newB) X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()]) xluc_param.set_param_vals(X) # keep track of the target crystal model to compare with refined from copy import deepcopy target_crystal = deepcopy(crystal) ############################# # Generate some reflections # ############################# # All indices in a 2.0 Angstrom sphere for crystal resolution = 2.0 index_generator = IndexGenerator( crystal.get_unit_cell(), space_group(space_group_symbols(1).hall()).type(), resolution, ) indices = index_generator.to_array() # Build a ray predictor and predict rays close to the Ewald sphere by using # the narrow rotation scan ref_predictor = ScansRayPredictor(scans_experiments, sweep_range) obs_refs = ref_predictor(indices, experiment_id=0) # Take only those rays that intersect the detector intersects = ray_intersection(mydetector, obs_refs) obs_refs = obs_refs.select(intersects) # Add in flags and ID columns by copying into standard reflection table tmp = flex.reflection_table.empty_standard(len(obs_refs)) tmp.update(obs_refs) obs_refs = tmp # Invent some variances for the centroid positions of the simulated data im_width = 0.1 * pi / 180.0 px_size = mydetector[0].get_pixel_size() var_x = flex.double(len(obs_refs), (px_size[0] / 2.0)**2) var_y = flex.double(len(obs_refs), (px_size[1] / 2.0)**2) var_phi = flex.double(len(obs_refs), (im_width / 2.0)**2) obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi) # Re-predict using the stills reflection predictor stills_ref_predictor = StillsExperimentsPredictor(stills_experiments) obs_refs_stills = stills_ref_predictor(obs_refs) # Set 'observed' centroids from the predicted ones obs_refs_stills["xyzobs.mm.value"] = obs_refs_stills["xyzcal.mm"] ############################### # Undo known parameter shifts # ############################### xlo_param.set_param_vals(xlo_p_vals[0]) xluc_param.set_param_vals(xluc_p_vals[0]) # make a refiner from dials.algorithms.refinement.refiner import phil_scope params = phil_scope.fetch(source=parse("")).extract() # Change this to get a plot do_plot = False if do_plot: params.refinement.refinery.journal.track_parameter_correlation = True from dials.algorithms.refinement.refiner import RefinerFactory # decrease bin_size_fraction to terminate on RMSD convergence params.refinement.target.bin_size_fraction = 0.01 params.refinement.parameterisation.beam.fix = "all" params.refinement.parameterisation.detector.fix = "all" refiner = RefinerFactory.from_parameters_data_experiments( params, obs_refs_stills, stills_experiments) # run refinement history = refiner.run() # regression tests assert len(history["rmsd"]) == 9 refined_crystal = refiner.get_experiments()[0].crystal uc1 = refined_crystal.get_unit_cell() uc2 = target_crystal.get_unit_cell() assert uc1.is_similar_to(uc2) if do_plot: plt = refiner.parameter_correlation_plot( len(history["parameter_correlation"]) - 1) plt.show()
def test_check_and_remove(): test = _Test() # Override the single panel model and parameterisation. This test function # exercises the code for non-hierarchical multi-panel detectors. The # hierarchical detector version is tested via test_cspad_refinement.py from dxtbx.model import Detector from dials.algorithms.refinement.parameterisation.detector_parameters import ( DetectorParameterisationMultiPanel, ) from dials.test.algorithms.refinement.test_multi_panel_detector_parameterisation import ( make_panel_in_array, ) multi_panel_detector = Detector() for x in range(3): for y in range(3): new_panel = make_panel_in_array((x, y), test.detector[0]) multi_panel_detector.add_panel(new_panel) test.detector = multi_panel_detector test.stills_experiments[0].detector = multi_panel_detector test.det_param = DetectorParameterisationMultiPanel( multi_panel_detector, test.beam) # update the generated reflections test.generate_reflections() # Predict the reflections in place and put in a reflection manager ref_predictor = StillsExperimentsPredictor(test.stills_experiments) ref_predictor(test.reflections) test.refman = ReflectionManagerFactory.from_parameters_reflections_experiments( refman_phil_scope.extract(), test.reflections, test.stills_experiments, do_stills=True, ) test.refman.finalise() # A non-hierarchical detector does not have panel groups, thus panels are # not treated independently wrt which reflections affect their parameters. # As before, setting 137 reflections as the minimum should leave all # parameters free, and should not remove any reflections options = ar_phil_scope.extract() options.min_nref_per_parameter = 137 ar = AutoReduce( options, [test.det_param], [test.s0_param], [test.xlo_param], [test.xluc_param], gon_params=[], reflection_manager=test.refman, ) ar.check_and_remove() assert ar.det_params[0].num_free() == 6 assert ar.beam_params[0].num_free() == 3 assert ar.xl_ori_params[0].num_free() == 3 assert ar.xl_uc_params[0].num_free() == 6 assert len(ar.reflection_manager.get_obs()) == 823 # Setting reflections as the minimum should fix the detector parameters, # which removes that parameterisation. Because all reflections are recorded # on that detector, they will all be removed as well. This then affects all # other parameterisations, which will be removed. options = ar_phil_scope.extract() options.min_nref_per_parameter = 138 ar = AutoReduce( options, [test.det_param], [test.s0_param], [test.xlo_param], [test.xluc_param], gon_params=[], reflection_manager=test.refman, ) ar.check_and_remove() assert not ar.det_params assert not ar.beam_params assert not ar.xl_ori_params assert not ar.xl_uc_params assert len(ar.reflection_manager.get_obs()) == 0