def test_target_gradient_calculation_finite_difference(small_reflection_table, single_exp, physical_param): """Test the calculated gradients against a finite difference calculation.""" model = PhysicalScalingModel.from_data(physical_param, single_exp, small_reflection_table) # need to 'add_data' model.configure_components(small_reflection_table, single_exp, physical_param) model.components["scale"].update_reflection_data() model.components["decay"].update_reflection_data() apm = multi_active_parameter_manager( ScalingTarget(), [model.components], [["scale", "decay"]], scaling_active_parameter_manager, ) model.components["scale"].inverse_scales = flex.double([2.0, 1.0, 2.0]) model.components["decay"].inverse_scales = flex.double([1.0, 1.0, 0.4]) Ih_table = IhTable([small_reflection_table], single_exp.crystal.get_space_group()) with patch.object(SingleScaler, "__init__", lambda x, y, z, k: None): scaler = SingleScaler(None, None, None) scaler._Ih_table = Ih_table # Now do finite difference check. target = ScalingTarget() scaler.update_for_minimisation(apm, 0) grad = target.calculate_gradients(scaler.Ih_table.blocked_data_list[0]) res = target.calculate_residuals(scaler.Ih_table.blocked_data_list[0]) assert (res > 1e-8), """residual should not be zero, or the gradient test below will not really be working!""" # Now compare to finite difference f_d_grad = calculate_gradient_fd(target, scaler, apm) print(list(f_d_grad)) print(list(grad)) assert list(grad) == pytest.approx(list(f_d_grad)) sel = f_d_grad > 1e-8 assert sel, """assert sel has some elements, as finite difference grad should
def test_target_jacobian_calculation_finite_difference(physical_param, single_exp, large_reflection_table): """Test the calculated jacobian against a finite difference calculation.""" physical_param.physical.decay_correction = False model = PhysicalScalingModel.from_data(physical_param, single_exp, large_reflection_table) # need to 'add_data' model.configure_components(large_reflection_table, single_exp, physical_param) model.components["scale"].update_reflection_data() apm = multi_active_parameter_manager( ScalingTarget(), [model.components], [["scale"]], scaling_active_parameter_manager, ) Ih_table = IhTable([large_reflection_table], single_exp.crystal.get_space_group()) with patch.object(SingleScaler, "__init__", lambda x, y, z, k: None): scaler = SingleScaler(None, None, None) scaler._Ih_table = Ih_table target = ScalingTarget() scaler.update_for_minimisation(apm, 0) fd_jacobian = calculate_jacobian_fd(target, scaler, apm) r, jacobian, w = target.compute_residuals_and_gradients( scaler.Ih_table.blocked_data_list[0]) assert r == pytest.approx( [-50.0 / 3.0, 70.0 / 3.0, -20.0 / 3.0, 12.5, -2.5] + [-25.0, 0.0, -75.0, 0.0, 200.0]) assert w == pytest.approx( [0.1, 0.1, 0.1, 0.02, 0.1, 0.02, 0.01, 0.02, 0.01, 0.01]) n_rows = jacobian.n_rows n_cols = jacobian.n_cols print(jacobian) print(fd_jacobian) for i in range(0, n_rows): for j in range(0, n_cols): assert jacobian[i, j] == pytest.approx(fd_jacobian[i, j], abs=1e-4)