def write_report_files(report, basename): # TODO: hdf output filename = basename + ".html" dirname = os.path.dirname(filename) if not os.path.exists(dirname): os.makedirs(dirname) logger.info("Writing to %r." % filename) report.to_html(filename, write_pickle=True)
def write_report_files(report, basename): # TODO: hdf output filename = basename + '.html' dirname = os.path.dirname(filename) if not os.path.exists(dirname): os.makedirs(dirname) logger.info('Writing to %r.' % filename) report.to_html(filename, write_pickle=True)
def DDSFromSymbolic(resolution, symdiffeosystem): # @UnusedVariable """ Creates a DiffeoSystem from synthetic diffeomorphisms. """ diffeo2s_config = get_diffeo2s_config() diffeo2dds_config = get_diffeo2dds_config() _, symdds = diffeo2dds_config.symdds.instance_smarter(symdiffeosystem) logger.info('Creating symbolic diffeomorphism (resolution = %d)' % resolution) diffeoactions = [] for _, action in enumerate(symdds.actions): id_diffeo, diffeo = parse_diffeo_spec(diffeo2s_config, action['diffeo']) label = action.get('label', id_diffeo) original_cmd = np.array(action['original_cmd']) logger.info('Getting symbolic diffeomorphism %r' % id_diffeo) shape = (resolution, resolution) viewport = SquareDomain([[-1, +1], [-1, +1]]) manifold = diffeo.get_topology() D, Dinfo = diffeo_from_function_viewport(diffeo, manifold, viewport, shape) D2d = Diffeomorphism2D(D, Dinfo) diffeo_inv = diffeo.get_inverse() D_inv, Dinfo_inv = \ diffeo_from_function_viewport(diffeo_inv, manifold, viewport, shape) D2d_inv = Diffeomorphism2D(D_inv, Dinfo_inv) action = DiffeoAction(label=label, diffeo=D2d, diffeo_inv=D2d_inv, original_cmd=original_cmd) diffeoactions.append(action) dds = DiffeoSystem('unnamed', actions=diffeoactions) return dds
def make_hard(dd): assert isinstance(dd, Diffeomorphism2D) if use_isomorphism_heuristics: stats = diffeo_stats(dd.d) per = np.percentile(stats.norm, norm_percentile) limit = per * factor # / 3.0 # print('norm mean/mean: %g %g' % (np.mean(stats.norm), np.median(stats.norm))) # for i in range(0, 100, 5): # print(' %3d%% = %g' % (i, np.percentile(stats.norm, i))) # limit = np.percentile(stats.norm, info_percentile) # if limit <= 1: # print('limit was %g' % limit) # limit = 4 variance = (stats.norm > limit).astype('float') logger.info('---hard choices---') logger.info(' per: %g pixels * %g =' % (per, factor)) logger.info('limit: %g pixels' % limit) logger.info(' vis: %.1f%% ' % (100 * np.mean(variance))) else: variance = (dd.variance > info_threshold).astype('float') return Diffeomorphism2D(dd.d, variance)