arr_data_single[0:50,:]['i'] = 3 arr_data_single[50:,:]['i'] = 6 # simulate 10 samples of data followed by 10 sample gap global_sample_arr = numpy.array(range(10), dtype = numpy.uint64) * 20 block_sample_arr = numpy.array(range(10), dtype = numpy.uint64) * 10 # constants sample_rate = 1.0E2 files_per_directory = 10 # start 2014-03-09 12:30:30 plus one sample start_global_index = (1394368230 * sample_rate) + 1 # test get unix time dt, picoseconds = digital_rf_hdf5.get_unix_time(long(start_global_index), sample_rate) print('For start_global_index=%i and sample_rate=%f, dt is %s and picoseconds is %i' % (start_global_index, sample_rate, dt, picoseconds)) # set up top level directory os.system("rm -rf /tmp/hdf5 ; mkdir /tmp/hdf5"); os.system("rm -rf /tmp/hdf52 ; mkdir /tmp/hdf52"); print("Test 0 - simple single write to multiple files, no compress, no checksum - channel 0"); os.system("rm -rf /tmp/hdf5/junk0 ; mkdir /tmp/hdf5/junk0"); data_object = digital_rf_hdf5.write_hdf5_channel("/tmp/hdf5/junk0", 'i4', 40, files_per_directory, start_global_index, sample_rate, "FAKE_UUID_0", 0, False, True, num_subchannels=num_subchannels); data = numpy.array(base_data, numpy.int32) result = data_object.rf_write(data); data_object.close(); print("done test 0.1");