def predict(self, filename, input):
     dill.load_session(filename)
     self.batch_size = 1
     self.forward_pass(input)
     a = self.layers[self.num_layers-1].activations
     a[np.where(a==np.max(a))] = 1
     a[np.where(a!=np.max(a))] = 0
     return a
예제 #2
0
def dump_session(file_path):
  """Pickle the current python session to be used in the worker.

  Note: Due to the inconsistency in the first dump of dill dump_session we
  create and load the dump twice to have consistent results in the worker and
  the running session. Check: https://github.com/uqfoundation/dill/issues/195
  """
  dill.dump_session(file_path)
  dill.load_session(file_path)
  return dill.dump_session(file_path)
예제 #3
0
    def load_dill(self):
        fname = fdialog.askopenfilename(filetypes=['dill {.pkl}'],
                                        title='Open dill PKL file',
                                        defaultextension='PKL')
        if fname:
            dill.load_session(fname)
            self.set_dataset_name(fname)

            curdir = Path(fname).parent
            os.chdir(curdir)
            messagebox.showinfo("Success", "Data loaded.")
예제 #4
0
def load_game():
    if os.path.exists('savefile.pkl') == True:
        dill.load_session('savefile.pkl')
        print('Game succesfully loaded!')
        input('<Continue (Press Enter)>')
        print_location()
    else:
        os.system('cls')
        print("There\'s no saved game to load!")
        input('<Return (Press Enter)>')
        title_screen()
예제 #5
0
def restore_session(file):
    """Resore a session from file.
    
    :return: Returns True if session is restored
    :rtype: bool
    """
    if not os.path.isfile(file):
        print(file + " doesn't exist")
        return False
    #load the session
    dill.load_session(file)
    print("Session restored.")
    return True
예제 #6
0
def dump_session(file_path):
    """For internal use only; no backwards-compatibility guarantees.

  Pickle the current python session to be used in the worker.

  Note: Due to the inconsistency in the first dump of dill dump_session we
  create and load the dump twice to have consistent results in the worker and
  the running session. Check: https://github.com/uqfoundation/dill/issues/195
  """
    with _pickle_lock_unless_py2:
        dill.dump_session(file_path)
        dill.load_session(file_path)
        return dill.dump_session(file_path)
예제 #7
0
 def check_accuracy(self, filename, inputs, labels):
     dill.load_session(filename)
     self.batch_size = len(inputs)
     self.forward_pass(inputs)
     a = self.layers[self.num_layers - 1].activations
     a[np.where(a == np.max(a))] = 1
     a[np.where(a != np.max(a))] = 0
     total = 0
     correct = 0
     for i in range(len(a)):
         total += 1
         if np.equal(a[i], labels[i]).all():
             correct += 1
     print("Accuracy: ", correct * 100 / total)
예제 #8
0
 def checkAccuracy(self, dataFile, data, flags):
     dill.load_session(dataFile)
     self.batchSize = len(data)
     self.passForward(data)
     a = self.layers[self.numLayers - 1].activations
     a[np.where(a == np.max(a))] = 1
     a[np.where(a != np.max(a))] = 0
     total = 0
     correct = 0
     for i in range(len(a)):
         total += 1
         if np.equal(a[i], flags[i]).all():
             correct += 1
     print("Accuracy: ", correct * 100 / total)
예제 #9
0
    def predict(self, filename, input):
        '''
        It takes 2 inputs:
        1. filename: The file from which trained model is to be loaded.
        2. input: The input for which we want the prediction.
        It does a forward pass, and then converts the output into one-hot encoding i.e. the maximum element of array is 1 and all others are 0.

        '''
        dill.load_session(filename)
        self.batch_size = 1
        self.forward_pass(input)
        a = self.layers[self.num_layers - 1].activations
        a[np.where(a == np.max(a))] = 1
        a[np.where(a != np.max(a))] = 0
        return a
예제 #10
0
 def check_accuracy(self, filename, inputs, labels):
     dill.load_session(filename)
     self.batch_size = len(inputs)
     self.forward_pass(inputs)
     a = self.layers[self.num_layers-1].activations
     num_classes = 10
     targets = np.array([a]).reshape(-1)
     a = np.asarray(a)
     one_hot_labels = np.eye(num_classes)[a.astype(int)]
     total=0
     correct=0
     for i in range(len(a)):
         total += 1
         if np.equal(one_hot_labels[i], labels[i]).all():
             correct += 1
     print("Accuracy: ", correct*100/total)
 def check_accuracy(self, filename, inputs, labels):
     dill.load_session(filename)
     self.batch_size = len(inputs)
     self.forward_pass(inputs)
     a = self.layers[self.num_layers-1].activations
     num_classes = 10
     targets = np.array([a]).reshape(-1)
     a = np.asarray(a)
     one_hot_labels = np.eye(num_classes)[a.astype(int)]
     total=0
     correct=0
     for i in range(len(a)):
         total += 1
         if np.equal(one_hot_labels[i], labels[i]).all():
             correct += 1
     print("Accuracy: ", correct*100/total)
def WorkspaceBasedCheckPt(CheckPtPosition = 0, AccessRecentOrNewWorkSpaceImage = False, Force = {'access':False, 'task':'load'}, CheckPoint_Dir = "NotebookCheckpoints/"):
    if not os.path.exists(CheckPoint_Dir):
        os.makedirs(CheckPoint_Dir)
        file= open((CheckPoint_Dir + '0__CheckPt.db'),"w+")
        file.close()
    LastCheckPt = max([int(CheckPoint.split('/')[len(CheckPoint.split('/')) -1].split('__')[0]) for CheckPoint in glob.glob(CheckPoint_Dir + '*{}'.format('CheckPt.db'))])
    
    ## Force can be used when proceding in non serialized manner
    if Force['access']: ## could have been compressed with chunk below using boolean algebra to make code more smaller
        AccessRecentOrNewWorkSpaceImage = False
        if Force['task'] == 'load':
            print("Checkpoint ", CheckPtPosition, "is to be loaded")
            if os.path.exists(CheckPoint_Dir + str(CheckPtPosition) + '__CheckPt.db'):
                dill.load_session(CheckPoint_Dir + str(CheckPtPosition) + '__CheckPt.db') # To restore a session
            else:
                print("This checkpoint doesn't exist, hence won't be loaded.")
        elif Force['task'] == 'save':
            print("Checkpoint ", CheckPtPosition, "is to be Saved")
            dill.dump_session(CheckPoint_Dir + str(CheckPtPosition) + '__CheckPt.db') # To Save a session
        return "Force used to {} workspace checkpoint_{}.".format(Force['task'], CheckPtPosition) ## exit here only
    
    
    ## This Code below is used to handle the actions on returning the value to run/not run the cell
    ### = is set so that the current check point cell code are able to run
    if ((AccessRecentOrNewWorkSpaceImage == False) and (CheckPtPosition <= LastCheckPt)):
        print('Most Recent Checkpoint is : {} \nHence, cells won\'t be running content untill most recent checkpoint is crossed.'.format(LastCheckPt))
        return False
    elif ((AccessRecentOrNewWorkSpaceImage == False) and (CheckPtPosition == (LastCheckPt +1))):
        print('Running this cell')
        return True
    elif ((AccessRecentOrNewWorkSpaceImage == False) and (CheckPtPosition > (LastCheckPt +1))):
        print("You have skipped over a checkpoint. Still running this cell")
        return True
    
    ## This Code below is used to handle the actions on saving/loading the workspace images
    if (AccessRecentOrNewWorkSpaceImage and (CheckPtPosition == 0)):
        print("Initial Phase, hence not saving workspace.")
    elif (AccessRecentOrNewWorkSpaceImage and (LastCheckPt > CheckPtPosition)):
        print("This is not the most recent checkpoint, hence not loading it. [Use Force to force load a checkpoint]")
    elif (AccessRecentOrNewWorkSpaceImage and (LastCheckPt == CheckPtPosition)):
        dill.load_session(CheckPoint_Dir + str(CheckPtPosition) + '__CheckPt.db') # To restore a session
        print("This is the most recent checkpoint, hence loading it.")
    elif (AccessRecentOrNewWorkSpaceImage and ((LastCheckPt +1) == CheckPtPosition)):
        dill.dump_session(CheckPoint_Dir + str(CheckPtPosition) + '__CheckPt.db') # To Save a session
        print("Congrats, on reaching a new checkpoint, saving it.")
    elif (AccessRecentOrNewWorkSpaceImage and ((LastCheckPt +1) < CheckPtPosition)):
        print("You have skipped over a checkpoint. Hence not Saving anything.")
예제 #13
0
def main():
    plt.close('all')
    file_path = './result'
    if not os.path.isdir(file_path):
        os.makedirs(file_path)
    dill.load_session('result/compare.pkl')
    S_list = main.S_list
    err = main.err
    err_pca = main.err_pca
    err_svd = main.err_svd
    err_mds = main.err_mds

    pr.plot_compare_mean_std(S_list, err, err_pca, err_svd, err_mds, False)
    pr.plot_compare_mean_std(S_list, err, err_pca, err_svd, err_mds, True)
    pr.plot_compare_scatter(S_list, err, err_pca, err_svd, err_mds, False)
    pr.plot_compare_scatter(S_list, err, err_pca, err_svd, err_mds, True)
    plt.close('all')
예제 #14
0
	def check_accuracy(self, filename, inputs, targets):
		dill.load_session(filename)
		# self.batch_size = len(inputs)
		self.forward_pass(inputs)
		a = self.layers[self.num_layers - 1].activations
		# a[np.where(a == np.max(a))] = 1
		# a[np.where(a != np.max(a))] = 0
		a = np.rint(a)
		total = 0
		correct = 0
		for i in range(len(a)):
			total = total + 1
			# print(self.layers[self.num_layers - 1].activations[i], a[i], labels[i])
			# print(a[i], targets[i])
			if np.equal(a[i], targets[i]).all():
				correct = correct + 1
		print("Accuracy on test: " + str(correct) + "/" + str(total))
예제 #15
0
def _run(func_fn):
    """Executes dill-ed function/the calculator of an ASE Atoms object using args/kwargs from dill-ed args/kwargs files"""

    session_fn = func_fn.replace('.pkl', '_session.pkl')

    try:
        dill.load_session(session_fn)
    except IOError:
        pass

    with open(func_fn) as func_f:
        func, args, kwargs = dill.load(func_f)

    if func.__class__ == gausspy.gaussian.Gaussian:
        func.start(*args, **kwargs)
    elif func.__class__ == ase.atoms.Atoms:
        func.calc.start(*args, **kwargs)
    else:
        func(*args, **kwargs)
예제 #16
0
def plot_alpha(filename=(), prename=(), name=()):
    dill.load_session(filename)
    k = 0
    it_alpha_fixed_ratio = 0
    p.z = p.isolver.save_alpha[:, it_alpha_fixed_ratio]
    p.plot_pre()
    fig = plt.figure()
    plt.contour(p.x, p.y, p.z.reshape(p.y.size, p.x.size), 30)
    p.ld.plot(lw=0.8, ms=1)
    p.so.plot(lw=0.8, ms=1)
    plt.colorbar()
    plt.title('alpha')
    plt.axis('equal')
    plt.axis('square')
    plt.show(block=False)
    if savefig:
        plt.savefig('runs/fig-thesis/%s_lsm_%s%s_alpha_it_alpha_%s.eps' %
                    (prename, name, k, it_alpha_fixed_ratio),
                    bbox_inches='tight')
예제 #17
0
def _run(func_fn):
    """Executes dill-ed function/the calculator of an ASE Atoms object using args/kwargs from dill-ed args/kwargs files"""

    session_fn = func_fn.replace('.pkl', '_session.pkl')

    try:
        dill.load_session(session_fn)
    except IOError:
        pass

    with open(func_fn) as func_f:
        func, args, kwargs = dill.load(func_f)

    if func.__class__ == gausspy.gaussian.Gaussian:
        func.start(*args, **kwargs)
    elif func.__class__ == ase.atoms.Atoms:
        func.calc.start(*args, **kwargs)
    else:
        func(*args, **kwargs)
예제 #18
0
    def test_loadRuntimeDataAndRun(self):
        """
        Tests the pickled function and data can be loaded and run correctly.
        """
        # ensure the 'add' function from the test's __main__ session is removed and
        # not available to this test case.
        del globals()['add']
        self.assertFalse('add' in globals().keys())

        # load session data and test if the 'add' function is again avaliable after
        # data is loaded.
        dill.load_session(self.__class__.sesPathPkl)
        self.assertTrue('add' in globals().keys())

        # load data for the 'add' function, and test if we get expected result after
        # running the 'add' function with the loaded data.
        with open(self.__class__.jobPathPkl, 'rb') as f:
            data = dill.load(f)
            self.assertTrue(add(*data) == 3)
예제 #19
0
def show_num_feat_stat():
    axs = {}
    ds = ['NSL-KDD', 'UCI-BCW']
    r = []
    for t in [1, 2]:
        app.mText.insert('end-1c', 'type: %s\n' % t)
        with os.scandir() as li:
            for entry in li:
                if entry.is_file() and ".pkl" in entry.name:
                    dill.load_session(entry.name)
                    s = 1
                    if (t == 1 and ld[0][0] in ['src_bytes', '\'src_bytes\''])\
                            or (t == 2 and ld[0][0] not in ['src_bytes', '\'src_bytes\'']):
                        app.mText.insert('end-1c', '%s\n' % entry.name)
                        for l in ld:
                            if ld[0][0][0] == '\'':
                                r.append(
                                    [ds[t - 1], entry.name, s, l[1], l[0]])
                            elif isinstance(ld[0][2], type({})):
                                r.append([
                                    ds[t - 1], entry.name, s, l[2][l[0]], l[0]
                                ])
                            else:
                                r.append(
                                    [ds[t - 1], entry.name, s, l[2], l[0]])
                            s += 1
    rd = pd.DataFrame(r, columns=['dataset', 'name', 'step', 'acc', 'feature'])
    rds = rd.groupby(by=['dataset', 'name']).agg('max')['step']
    rd2 = pd.DataFrame({
        'dataset':
        np.array(rds.index.get_level_values(0).values),
        'step':
        np.array(rds.values)
    })
    ax: plt.Axes = rd2.boxplot(column='step', by='dataset')
    ax.get_figure().suptitle('')
    ax.set_title('Number of selected features')
    ax.get_figure().canvas.set_window_title('num_feat')

    plt.show()
예제 #20
0
def show_growth_stat():
    axs = {}
    for t in [1, 2]:
        app.mText.insert('end-1c', 'type: %s\n' % t)
        r = []
        with os.scandir() as li:
            for entry in li:
                if entry.is_file() and ".pkl" in entry.name:
                    dill.load_session(entry.name)
                    s = 1
                    if (t == 1 and ld[0][0] in ['src_bytes', '\'src_bytes\''])\
                            or (t == 2 and ld[0][0] not in ['src_bytes', '\'src_bytes\'']):
                        app.mText.insert('end-1c', '%s\n' % entry.name)
                        for l in ld:
                            if ld[0][0][0] == '\'':
                                r.append([entry.name, s, l[1], l[0]])
                            elif isinstance(ld[0][2], type({})):
                                r.append([entry.name, s, l[2][l[0]], l[0]])
                            else:
                                r.append([entry.name, s, l[2], l[0]])
                            s += 1
        rd = pd.DataFrame(r, columns=['name', 'step', 'acc', 'feature'])
        ax: plt.Axes = rd.boxplot(column='acc', by='step')
        ax.get_figure().suptitle('')
        ax.set_title('Accuracy by step')
        ax.get_figure().canvas.set_window_title('growth')
        '''
        ax = rd.boxplot(column='acc', by='step')
        ax.get_figure().suptitle('')
        ax.set_title('Accuracy by step')
        ax.set_yscale('log')
        ax.get_figure().canvas.set_window_title('growth_log')
        '''
        axs[t] = ax

    xlim = axs[1].get_xlim()
    ylim = axs[1].get_ylim()
    axs[2].set_xlim(xlim[0], xlim[1])
    axs[2].set_ylim(ylim[0], ylim[1])
    plt.show()
예제 #21
0
def show_important_features_builtin():
    axs = {}
    global top_n, FI
    for t in [1, 2]:
        app.mText.insert('end-1c', 'type: %s\n' % t)
        r = []
        with os.scandir() as li:
            for entry in li:
                if entry.is_file() and ".pkl" in entry.name:
                    top_n = []
                    FI = []
                    dill.load_session(entry.name)
                    if (t == 1 and ld[0][0] in ['src_bytes', '\'src_bytes\''])\
                            or (t == 2 and ld[0][0] not in ['src_bytes', '\'src_bytes\'']):
                        app.mText.insert('end-1c', '%s\n' % entry.name)
                        if len(top_n):
                            app.mText.insert(
                                'end-1c', '%s;%s;%s;%s;%s;%s\n' %
                                (X_train.columns[top_n[0]],
                                 locale.format("%g", FI[top_n[0]]),
                                 X_train.columns[top_n[1]],
                                 locale.format("%g", FI[top_n[1]]),
                                 X_train.columns[top_n[2]],
                                 locale.format("%g", FI[top_n[2]])))
예제 #22
0
    def load_session(dir):
        """
            The method to load a session

            #------------------
            Parameters:

                *argv: the objects that wanted to be stored in the session

            #------------------
            Returns:

                Loads the session

            #------------------
        """
        return dill.load_session(dir)
예제 #23
0
파일: data.py 프로젝트: fdrobnic/GFS
def load_data_KDD():
    dill.load_session('NSL-KDD.pkl')
예제 #24
0
# In[1]:

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import r2_score, mean_squared_error
from sklearn import metrics
from sklearn import preprocessing
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler
import seaborn as sns
import matplotlib.pyplot as plt
import dill

dill.load_session("tsne.db")

# In[ ]:

from sklearn.manifold import TSNE
import seaborn as sns


def run_tsne(X, y, Perplexity, Iterations, noprogresstolerance):
    tsneModel = TSNE(perplexity=Perplexity,
                     n_iter=Iterations,
                     n_iter_without_progress=noprogresstolerance,
                     n_jobs=100)
    X_embedded = tsneModel.fit_transform(X)
    return sns.scatterplot(X_embedded[:, 0],
                           X_embedded[:, 1],
예제 #25
0
# 2018 Oct 9 - Continuing to analyze

import dill

in_filename = 'Analyzing_Kepler-76b_Using_Emcee.pkl'
dill.load_session(in_filename)

# Recover last position
pos = sampler.chain[:, -1, :]

nsteps = 5000
for i, result in enumerate(sampler.sample(pos, iterations=nsteps)):
    if (i + 1) % 50 == 0:
        print("{0:5.1%}".format(float(i) / nsteps))

out_filename = 'Continuing_to_Analyze_Kepler-76b_Using_Emcee.pkl'
dill.dump_session(out_filename)
print(np.mean(sampler.chain[:, :, 0]), np.std(sampler.chain[:, :, 0]))
예제 #26
0
파일: data.py 프로젝트: fdrobnic/GFS
def load_data_cancer():
    dill.load_session('UCI-BCW.pkl')
예제 #27
0
파일: __init__.py 프로젝트: duerrp/pycalc
from __future__ import absolute_import

import os
import dill
import __main__ as _main_module
import six

if six.PY2:
    PYCALC_SESSION_NAME = os.path.expanduser("~/.pycalc_session")
elif six.PY3:
    PYCALC_SESSION_NAME = os.path.expanduser("~/.pycalc3_session")
else:
    print("Python version not supported")

try:
    dill.load_session(PYCALC_SESSION_NAME)
except IOError:
    print("Re-loading pycalc modules...")
    import numpy as np
    _main_module.np = np

    import scipy as sc
    _main_module.sc = sc

    import sympy as sp
    import sympy.physics
    _main_module.sp = sp
    _main_module.u = sp.physics.units
    _main_module.u.B = sympy.physics.units.Unit('byte', 'B')
    _main_module.u.b = sympy.Rational(1, 8) * sympy.physics.units.B
    _main_module.u.KiB = 1024 * sympy.physics.units.B
예제 #28
0
# Broadcasting: https://docs.scipy.org/doc/numpy-1.13.0/reference/ufuncs.html#ufuncs-broadcasting
# 当多个array做element-wize function时,按下面的规则broadcasting
# - 对齐维度: 确定最大的dimension, 先prepend 长度为1的dimension来对齐所有dimension
# - 对齐维度长度: 所有维度要么长度相等,要么长度为1.




# 存储整个环境变量
# https://stackoverflow.com/a/35296032
import dill # pip install dill
filename = 'globalsave.pkl'
dill.dump_session(filename)
# and to load the session again:
dill.load_session(filename)





# Jupyter notebook 相关  --------------------------
jupyter nbconvert --to=python [YOUR_NOTEBOOK].ipynb  # 会生成 [YOUR_NOTEBOOK].py 文件
jupyter nbconvert --to notebook --output OUT.ipynb --execute [YOUR_NOTEBOOK].ipynb
# 如果没有指定 --to nbtebook,默认输出类型是html
# 不加output会生成 [YOUR_NOTEBOOK].html 或者 [YOUR_NOTEBOOK].nbconvert.ipynb

# Seems below method does not work
# Configuring https://nbconvert.readthedocs.io/en/latest/config_options.html
# add below into  ~/.jupyter/jupyter_nbconvert_config.json
"ExecutePreprocessor": {
예제 #29
0
    uct_visit_ave_cnt_list, ocba_visit_ave_cnt_list = [], []
    uct_ave_Q_list, ocba_ave_Q_list = [], []
    uct_ave_std_list, ocba_ave_std_list = [], []
    if opp_first_move == 0:
        optimal_set = {4}
        setup = 1
    elif opp_first_move == 4:
        optimal_set = {0, 2, 6, 8}
        setup = 2
    else:
        raise ValueError('opp_first_move should either be 0 or 4.')

    ckpt = args.checkpoint

    if ckpt != '':
        dill.load_session(ckpt)
        # resume experiment from the last finished budget
        budget_range = range(budget + step, budget_end + 1, step)

    for budget in budget_range:
        PCS_uct = 0
        PCS_ocba = 0
        uct_selection.append([])
        ocba_selection.append([])
        uct_visit_cnt, ocba_visit_cnt = defaultdict(int), defaultdict(int)
        uct_ave_Q, ocba_ave_Q = defaultdict(int), defaultdict(int)
        uct_ave_std, ocba_ave_std = defaultdict(int), defaultdict(int)
        for i in range(rep):
            uct_mcts, uct_root_node, uct_cur_node = play_game_uct(
                budget=budget,
                exploration_weight=exploration_weight,
 def load_model(self, filename):
     dill.load_session(filename)
예제 #31
0
    d_tpp = datetime.strptime(d, '%Y-%m-%d')
    df['date'][df['date']==d] = d_tpp


# Maybe then better to store session from here

# Will review tomorrow

# Save session
dnm = r'C:\Users\rghiglia\Documents\ML_ND\Yelp'
fnmO = (dnm + '\\' + 'yelp_data.pkl')
import time
import dill                            #pip install dill --user
start_time = time.time()
dill.dump_session(fnmO)
print("--- %s seconds ---" % (time.time() - start_time))
# It seems prohibitively long :(


# Load session
dnm = r'C:\Users\rghiglia\Documents\ML_ND\Yelp'
import time
import dill                            #pip install dill --user
start_time = time.time()
dill.load_session(fnmO)
print("--- %s seconds ---" % (time.time() - start_time))




예제 #32
0
 def load_model(self, filename):
     dill.load_session(filename)
예제 #33
0
def load_session(file_path):
  return dill.load_session(file_path)
예제 #34
0
import sys
import os
import dill

#----- Global variables ----------
path_globals = str(sys.argv[1])
dill.load_session(path_globals)
#--------------------------------

prefix = "abs_"
dir_plots = dir_main + "plots/"
dir_chunks = dir_main + "chunks/"
file_abs = dir_main + "Absolute_magnitudes.csv"

bands = []
errors = []
covariates = []
waves = []
for instrument in instruments:
    bands.append(instrument["observables"])
    errors.append(instrument["uncertainties"])
    covariates.append(instrument["covariates"])
    waves.append(instrument["wavelengths"])

bands = sum(bands, [])
errors = sum(errors, [])
covariates = sum(covariates, [])
waves = sum(waves, [])

observables = [prefix + band for band in bands]
uncertainties = [prefix + error for error in errors]
예제 #35
0
def load_session(file_path):
    with _pickle_lock_unless_py2:
        return dill.load_session(file_path)
예제 #36
0
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 13 16:53:46 2014

@author: s362khan
"""

import dill
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as ss

plt.ion()

dill.load_session('positionToleranceData.pkl')


# ---------------------------------------------------------
# Code to plot Zoccolan Data onto a figure
zoc_pos_tol = yScatterRaw * np.pi / 180.0  # in Radians
zoc_sel_af = xScatterRaw

plt.scatter(zoc_sel_af, zoc_pos_tol, label='Original Data',  marker='o', s=60, color='blue')
plt.plot(xScatterRaw,
         (yLineFit[0]* np.pi / 180.0 * xScatterRaw + yLineFit[1] * np.pi / 180.0),
         color='blue',
         linewidth=2)
#----------------------------------------------------------


plt.figure('Original Data')
예제 #37
0
# -*- coding: utf-8 -*-
"""
Created on Sat Apr  7 13:31:16 2018

@author: msval
"""
import dill

filename = 'globalsave.pkl'
dill.load_session(filename)
예제 #38
0
a_const = 1
a_lst = [1, 2, 3]
a_dict = {'a': 1, 'b': [1, 2]}
a_df = pandas.DataFrame({'col': [2, 4]})

a_lambda_func = lambda x: x**2


def a_func(x):
    return x**2


class a_class(object):
    def class_func(self, n):
        return n + 1


a_class_instance = a_class()

# to save session
dill.dump_session('./backup_workspace/backup/backup_dill.db')

# ====== to load your session ======
import dill

bk_restore = dill.load_session('./backup_workspace/backup/backup_dill.db')

restored_variables = [el for el in dir() if el.startswith('a_')]
print(f'{len(restored_variables)} restored variables: ', restored_variables)
reload(msabpy)

########################################
# Play sound when a program finishes
########################################
from IPython.display import Audio, display
def allDone():
    display(Audio(url="https://sound.peal.io/ps/audios/000/000/537/original/woo_vu_luvub_dub_dub.wav', autoplay=True))

########################################
# Clear notebook output
########################################
from IPython.display import clear_output
clear_output(wait=True)

########################################
# Save (& restore) variables
########################################
import dill
dill.dump_session("notebook.db")
dill.load_session("notebook.db")

########################################
# Reusing variables across notebooks
########################################
%store          # List of all variables and their current values
%store var1     # Store variable `var1`
%store -r var1  # Restore variable `var1`
%store -z       # Remove all variables from storage
# Reference: https://ipython.org/ipython-doc/3/config/extensions/storemagic.html