def fdiff(self, argindex=3): if argindex != 3: raise ArgumentIndexError(self, argindex) nap = Tuple(*[a + 1 for a in self.ap]) nbq = Tuple(*[b + 1 for b in self.bq]) fac = Mul(*self.ap) / Mul(*self.bq) return fac * hyper(nap, nbq, self.argument)
def test_tensorsymmetry(): sym = tensorsymmetry([1] * 2) sym1 = TensorSymmetry(get_symmetric_group_sgs(2)) assert sym == sym1 sym = tensorsymmetry([2]) sym1 = TensorSymmetry(get_symmetric_group_sgs(2, 1)) assert sym == sym1 sym2 = tensorsymmetry() assert sym2.base == Tuple() and sym2.generators == Tuple(Permutation(1)) pytest.raises(NotImplementedError, lambda: tensorsymmetry([2, 1]))
def __new__(cls, function, limits): fun = sympify(function) if not is_sequence(fun) or len(fun) != 2: raise ValueError("Function argument should be (x(t), y(t)) " "but got %s" % str(function)) if not is_sequence(limits) or len(limits) != 3: raise ValueError("Limit argument should be (t, tmin, tmax) " "but got %s" % str(limits)) return GeometryEntity.__new__(cls, Tuple(*fun), Tuple(*limits))
def _eval_rewrite_as_Sum(self, ap, bq, z): from diofant.functions import factorial, RisingFactorial, Piecewise from diofant import Sum n = Dummy("n", integer=True) rfap = Tuple(*[RisingFactorial(a, n) for a in ap]) rfbq = Tuple(*[RisingFactorial(b, n) for b in bq]) coeff = Mul(*rfap) / Mul(*rfbq) return Piecewise((Sum(coeff * z**n / factorial(n), (n, 0, oo)), self.convergence_statement), (self, True))
def __new__(cls, *args, **kwargs): evaluate = kwargs.get('evaluate', global_evaluate[0]) if iterable(args[0]): if isinstance(args[0], Point) and not evaluate: return args[0] args = args[0] # unpack the arguments into a friendly Tuple # if we were already a Point, we're doing an excess # iteration, but we'll worry about efficiency later coords = Tuple(*args) if any(a.is_number and im(a) for a in coords): raise ValueError('Imaginary coordinates not permitted.') # Turn any Floats into rationals and simplify # any expressions before we instantiate if evaluate: coords = coords.xreplace(dict( [(f, simplify(nsimplify(f, rational=True))) for f in coords.atoms(Float)])) if len(coords) == 2: return Point2D(coords, **kwargs) if len(coords) == 3: return Point3D(coords, **kwargs) return GeometryEntity.__new__(cls, *coords)
def __new__(cls, *args, **kwargs): from diofant.geometry.point import Point args = [ Tuple(*a) if is_sequence(a) and not isinstance(a, Point) else sympify(a) for a in args ] return Basic.__new__(cls, *args)
def _process_limits(*symbols): """Process the list of symbols and convert them to canonical limits, storing them as Tuple(symbol, lower, upper). The orientation of the function is also returned when the upper limit is missing so (x, 1, None) becomes (x, None, 1) and the orientation is changed. """ limits = [] orientation = 1 for V in symbols: if isinstance(V, (Dummy, Symbol)): limits.append(Tuple(V)) continue elif is_sequence(V, Tuple): V = sympify(flatten(V)) if V[0].is_Symbol: newsymbol = V[0] if len(V) == 2 and isinstance(V[1], Interval): V[1:] = [V[1].start, V[1].end] if len(V) == 3: if V[1] is None and V[2] is not None: nlim = [V[2]] elif V[1] is not None and V[2] is None: orientation *= -1 nlim = [V[1]] elif V[1] is None and V[2] is None: nlim = [] else: nlim = V[1:] limits.append(Tuple(newsymbol, *nlim)) continue elif len(V) == 1 or (len(V) == 2 and V[1] is None): limits.append(Tuple(newsymbol)) continue elif len(V) == 2: limits.append(Tuple(newsymbol, V[1])) continue raise ValueError('Invalid limits given: %s' % str(symbols)) return limits, orientation
def __new__(cls, function, *symbols, **assumptions): # Any embedded piecewise functions need to be brought out to the # top level so that integration can go into piecewise mode at the # earliest possible moment. # # This constructor only differs from ExprWithLimits # in the application of the orientation variable. Perhaps merge? function = sympify(function) if hasattr(function, 'func') and function.func is Equality: lhs = function.lhs rhs = function.rhs return Equality(cls(lhs, *symbols, **assumptions), cls(rhs, *symbols, **assumptions)) function = piecewise_fold(function) if function is S.NaN: return S.NaN if symbols: limits, orientation = _process_limits(*symbols) else: # symbol not provided -- we can still try to compute a general form free = function.free_symbols if len(free) != 1: raise ValueError( " specify dummy variables for %s. If the integrand contains" " more than one free symbol, an integration variable should" " be supplied explicitly e.g., integrate(f(x, y), x)" % function) limits, orientation = [Tuple(s) for s in free], 1 # denest any nested calls while cls == type(function): limits = list(function.limits) + limits function = function.function obj = Expr.__new__(cls, **assumptions) arglist = [orientation * function] arglist.extend(limits) obj._args = tuple(arglist) return obj
def __new__(cls, *args, **kwargs): eval = kwargs.get('evaluate', global_evaluate[0]) if isinstance(args[0], (Point, Point3D)): if not eval: return args[0] args = args[0].args else: if iterable(args[0]): args = args[0] if len(args) not in (2, 3): raise TypeError( "Enter a 2 or 3 dimensional point") coords = Tuple(*args) if len(coords) == 2: coords += (S.Zero,) if eval: coords = coords.xreplace(dict( [(f, simplify(nsimplify(f, rational=True))) for f in coords.atoms(Float)])) return GeometryEntity.__new__(cls, *coords)
def __new__(cls, function, *symbols, **assumptions): # Any embedded piecewise functions need to be brought out to the # top level so that integration can go into piecewise mode at the # earliest possible moment. function = sympify(function) if hasattr(function, 'func') and function.func is Equality: lhs = function.lhs rhs = function.rhs return Equality(cls(lhs, *symbols, **assumptions), cls(rhs, *symbols, **assumptions)) function = piecewise_fold(function) if function is S.NaN: return S.NaN if symbols: limits, orientation = _process_limits(*symbols) else: # symbol not provided -- we can still try to compute a general form free = function.free_symbols if len(free) != 1: raise ValueError("specify dummy variables for %s" % function) limits, orientation = [Tuple(s) for s in free], 1 # denest any nested calls while cls == type(function): limits = list(function.limits) + limits function = function.function # Only limits with lower and upper bounds are supported; the indefinite form # is not supported if any(len(l) != 3 or None in l for l in limits): raise ValueError( 'ExprWithLimits requires values for lower and upper bounds.') obj = Expr.__new__(cls, **assumptions) arglist = [function] arglist.extend(limits) obj._args = tuple(arglist) return obj
def __new__(cls, *args, **kwargs): eval = kwargs.get('evaluate', global_evaluate[0]) check = True if isinstance(args[0], Point2D): if not eval: return args[0] args = args[0].args check = False else: if iterable(args[0]): args = args[0] if len(args) != 2: raise ValueError( "Only two dimensional points currently supported") coords = Tuple(*args) if check: if any(a.is_number and im(a) for a in coords): raise ValueError('Imaginary args not permitted.') if eval: coords = coords.xreplace(dict( [(f, simplify(nsimplify(f, rational=True))) for f in coords.atoms(Float)])) return GeometryEntity.__new__(cls, *coords)
def verify_numerically(f, g, z=None, tol=1.0e-6, a=2, b=-1, c=3, d=1): """ Test numerically that f and g agree when evaluated in the argument z. If z is None, all symbols will be tested. This routine does not test whether there are Floats present with precision higher than 15 digits so if there are, your results may not be what you expect due to round- off errors. Examples ======== >>> from diofant import sin, cos >>> from diofant.abc import x >>> from diofant.utilities.randtest import verify_numerically as tn >>> tn(sin(x)**2 + cos(x)**2, 1, x) true """ f, g, z = Tuple(f, g, z) z = [z] if isinstance(z, Symbol) else (f.free_symbols | g.free_symbols) reps = list(zip(z, [random_complex_number(a, b, c, d) for zi in z])) z1 = f.subs(reps).n() z2 = g.subs(reps).n() return comp(z1, z2, tol)
def __new__(cls, *args): if len(args) == 5: args = [(args[0], args[1]), (args[2], args[3]), args[4]] if len(args) != 3: raise TypeError("args must be either as, as', bs, bs', z or " "as, bs, z") def tr(p): if len(p) != 2: raise TypeError("wrong argument") return TupleArg(_prep_tuple(p[0]), _prep_tuple(p[1])) arg0, arg1 = tr(args[0]), tr(args[1]) if Tuple(arg0, arg1).has(S.Infinity, S.ComplexInfinity, S.NegativeInfinity): raise ValueError("G-function parameters must be finite") if any((a - b).is_integer and (a - b).is_positive for a in arg0[0] for b in arg1[0]): raise ValueError("no parameter a1, ..., an may differ from " "any b1, ..., bm by a positive integer") # TODO should we check convergence conditions? return Function.__new__(cls, arg0, arg1, args[2])
def bother(self): """ Second set of denominator parameters. """ return Tuple(*self.args[1][1])
def bq(self): """ Combined denominator parameters. """ return Tuple(*(self.args[1][0] + self.args[1][1]))
def bm(self): """ First set of denominator parameters. """ return Tuple(*self.args[1][0])
def aother(self): """ Second set of numerator parameters. """ return Tuple(*self.args[0][1])
def ap(self): """ Combined numerator parameters. """ return Tuple(*(self.args[0][0] + self.args[0][1]))
def _eval_derivative(self, sym): """Evaluate the derivative of the current Integral object by differentiating under the integral sign [1], using the Fundamental Theorem of Calculus [2] when possible. Whenever an Integral is encountered that is equivalent to zero or has an integrand that is independent of the variable of integration those integrals are performed. All others are returned as Integral instances which can be resolved with doit() (provided they are integrable). References ========== .. [1] http://en.wikipedia.org/wiki/Differentiation_under_the_integral_sign .. [2] http://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus Examples ======== >>> from diofant import Integral >>> from diofant.abc import x, y >>> i = Integral(x + y, y, (y, 1, x)) >>> i.diff(x) Integral(x + y, (y, x)) + Integral(1, y, (y, 1, x)) >>> i.doit().diff(x) == i.diff(x).doit() True >>> i.diff(y) 0 The previous must be true since there is no y in the evaluated integral: >>> i.free_symbols == {x} True >>> i.doit() 2*x**3/3 - x/2 - 1/6 """ # differentiate under the integral sign; we do not # check for regularity conditions (TODO), see issue 4215 # get limits and the function f, limits = self.function, list(self.limits) # the order matters if variables of integration appear in the limits # so work our way in from the outside to the inside. limit = limits.pop(-1) if len(limit) == 3: x, a, b = limit elif len(limit) == 2: x, b = limit a = None else: a = b = None x = limit[0] if limits: # f is the argument to an integral f = self.func(f, *tuple(limits)) # assemble the pieces def _do(f, ab): dab_dsym = diff(ab, sym) if not dab_dsym: return S.Zero if isinstance(f, Integral): limits = [(x, x) if (len(l) == 1 and l[0] == x) else l for l in f.limits] f = self.func(f.function, *limits) return f.subs(x, ab) * dab_dsym rv = 0 if b is not None: rv += _do(f, b) if a is not None: rv -= _do(f, a) if len(limit) == 1 and sym == x: # the dummy variable *is* also the real-world variable arg = f rv += arg else: # the dummy variable might match sym but it's # only a dummy and the actual variable is determined # by the limits, so mask off the variable of integration # while differentiating u = Dummy('u') arg = f.subs(x, u).diff(sym).subs(u, x) rv += self.func(arg, Tuple(x, a, b)) return rv
def bq(self): """ Denominator parameters of the hypergeometric function. """ return Tuple(*self.args[1])
def ap(self): """ Numerator parameters of the hypergeometric function. """ return Tuple(*self.args[0])
def __init__(self, data, **kwarg): """ Creates a TableForm. Parameters: data ... 2D data to be put into the table; data can be given as a Matrix headings ... gives the labels for rows and columns: Can be a single argument that applies to both dimensions: - None ... no labels - "automatic" ... labels are 1, 2, 3, ... Can be a list of labels for rows and columns: The lables for each dimension can be given as None, "automatic", or [l1, l2, ...] e.g. ["automatic", None] will number the rows [default: None] alignments ... alignment of the columns with: - "left" or "<" - "center" or "^" - "right" or ">" When given as a single value, the value is used for all columns. The row headings (if given) will be right justified unless an explicit alignment is given for it and all other columns. [default: "left"] formats ... a list of format strings or functions that accept 3 arguments (entry, row number, col number) and return a string for the table entry. (If a function returns None then the _print method will be used.) wipe_zeros ... Don't show zeros in the table. [default: True] pad ... the string to use to indicate a missing value (e.g. elements that are None or those that are missing from the end of a row (i.e. any row that is shorter than the rest is assumed to have missing values). When None, nothing will be shown for values that are missing from the end of a row; values that are None, however, will be shown. [default: None] Examples ======== >>> from diofant import TableForm, Matrix >>> TableForm([[5, 7], [4, 2], [10, 3]]) 5 7 4 2 10 3 >>> TableForm([list('.'*i) for i in range(1, 4)], headings='automatic') | 1 2 3 --------- 1 | . 2 | . . 3 | . . . >>> TableForm([['.'*(j if not i%2 else 1) for i in range(3)] ... for j in range(4)], alignments='rcl') . . . . .. . .. ... . ... """ from diofant import Symbol, Matrix from diofant.core.sympify import sympify, SympifyError # We only support 2D data. Check the consistency: if isinstance(data, Matrix): data = data.tolist() _w = len(data[0]) _h = len(data) # fill out any short lines pad = kwarg.get('pad', None) ok_None = False if pad is None: pad = " " ok_None = True pad = Symbol(pad) _w = max(len(line) for line in data) for i, line in enumerate(data): if len(line) != _w: line.extend([pad]*(_w - len(line))) for j, lj in enumerate(line): if lj is None: if not ok_None: lj = pad else: try: lj = sympify(lj) except SympifyError: lj = Symbol(str(lj)) line[j] = lj data[i] = line _lines = Tuple(*data) headings = kwarg.get("headings", [None, None]) if headings == "automatic": _headings = [range(1, _h + 1), range(1, _w + 1)] else: h1, h2 = headings if h1 == "automatic": h1 = range(1, _h + 1) if h2 == "automatic": h2 = range(1, _w + 1) _headings = [h1, h2] allow = ('l', 'r', 'c') alignments = kwarg.get("alignments", "l") def _std_align(a): a = a.strip().lower() if len(a) > 1: return {'left': 'l', 'right': 'r', 'center': 'c'}.get(a, a) else: return {'<': 'l', '>': 'r', '^': 'c'}.get(a, a) std_align = _std_align(alignments) if std_align in allow: _alignments = [std_align]*_w else: _alignments = [] for a in alignments: std_align = _std_align(a) _alignments.append(std_align) if std_align not in ('l', 'r', 'c'): raise ValueError('alignment "%s" unrecognized' % alignments) if _headings[0] and len(_alignments) == _w + 1: _head_align = _alignments[0] _alignments = _alignments[1:] else: _head_align = 'r' if len(_alignments) != _w: raise ValueError( 'wrong number of alignments: expected %s but got %s' % (_w, len(_alignments))) _column_formats = kwarg.get("formats", [None]*_w) _wipe_zeros = kwarg.get("wipe_zeros", True) self._w = _w self._h = _h self._lines = _lines self._headings = _headings self._head_align = _head_align self._alignments = _alignments self._column_formats = _column_formats self._wipe_zeros = _wipe_zeros
def __new__(cls, expr, *args, **kwargs): expr = sympify(expr) if not args: if expr.is_Order: variables = expr.variables point = expr.point else: variables = list(expr.free_symbols) point = [S.Zero]*len(variables) else: args = list(args if is_sequence(args) else [args]) variables, point = [], [] if is_sequence(args[0]): for a in args: v, p = list(map(sympify, a)) variables.append(v) point.append(p) else: variables = list(map(sympify, args)) point = [S.Zero]*len(variables) if not all(isinstance(v, (Dummy, Symbol)) for v in variables): raise TypeError('Variables are not symbols, got %s' % variables) if len(list(uniq(variables))) != len(variables): raise ValueError('Variables are supposed to be unique symbols, got %s' % variables) if expr.is_Order: expr_vp = dict(expr.args[1:]) new_vp = dict(expr_vp) vp = dict(zip(variables, point)) for v, p in vp.items(): if v in new_vp.keys(): if p != new_vp[v]: raise NotImplementedError( "Mixing Order at different points is not supported.") else: new_vp[v] = p if set(expr_vp.keys()) == set(new_vp.keys()): return expr else: variables = list(new_vp.keys()) point = [new_vp[v] for v in variables] if expr is S.NaN: return S.NaN if any(x in p.free_symbols for x in variables for p in point): raise ValueError('Got %s as a point.' % point) if variables: if any(p != point[0] for p in point): raise NotImplementedError if point[0] in [S.Infinity, S.NegativeInfinity]: s = {k: 1/Dummy() for k in variables} rs = {1/v: 1/k for k, v in s.items()} elif point[0] is not S.Zero: s = {k: Dummy() + point[0] for k in variables} rs = {v - point[0]: k - point[0] for k, v in s.items()} else: s = () rs = () expr = expr.subs(s) if expr.is_Add: from diofant import expand_multinomial expr = expand_multinomial(expr) if s: args = tuple(r[0] for r in rs.items()) else: args = tuple(variables) if len(variables) > 1: # XXX: better way? We need this expand() to # workaround e.g: expr = x*(x + y). # (x*(x + y)).as_leading_term(x, y) currently returns # x*y (wrong order term!). That's why we want to deal with # expand()'ed expr (handled in "if expr.is_Add" branch below). expr = expr.expand() if expr.is_Add: lst = expr.extract_leading_order(args) expr = Add(*[f.expr for (e, f) in lst]) elif expr: expr = expr.as_leading_term(*args) expr = expr.as_independent(*args, as_Add=False)[1] expr = expand_power_base(expr) expr = expand_log(expr) if len(args) == 1: # The definition of O(f(x)) symbol explicitly stated that # the argument of f(x) is irrelevant. That's why we can # combine some power exponents (only "on top" of the # expression tree for f(x)), e.g.: # x**p * (-x)**q -> x**(p+q) for real p, q. x = args[0] margs = list(Mul.make_args( expr.as_independent(x, as_Add=False)[1])) for i, t in enumerate(margs): if t.is_Pow: b, q = t.args if b in (x, -x) and q.is_extended_real and not q.has(x): margs[i] = x**q elif b.is_Pow and not b.exp.has(x): b, r = b.args if b in (x, -x) and r.is_extended_real: margs[i] = x**(r*q) elif b.is_Mul and b.args[0] is S.NegativeOne: b = -b if b.is_Pow and not b.exp.has(x): b, r = b.args if b in (x, -x) and r.is_extended_real: margs[i] = x**(r*q) expr = Mul(*margs) expr = expr.subs(rs) if expr is S.Zero: return expr if expr.is_Order: expr = expr.expr if not expr.has(*variables): expr = S.One # create Order instance: vp = dict(zip(variables, point)) variables.sort(key=default_sort_key) point = [vp[v] for v in variables] args = (expr,) + Tuple(*zip(variables, point)) obj = Expr.__new__(cls, *args) return obj
def test_count_ops_visual(): ADD, MUL, POW, SIN, COS, EXP, AND, D, G = symbols( 'Add Mul Pow sin cos exp And Derivative Integral'.upper()) DIV, SUB, NEG = symbols('DIV SUB NEG') NOT, OR, AND, XOR, IMPLIES, EQUIVALENT, _ITE, BASIC, TUPLE = symbols( 'Not Or And Xor Implies Equivalent ITE Basic Tuple'.upper()) def count(val): return count_ops(val, visual=True) assert count(7) is Integer(0) assert count(-1) == NEG assert count(-2) == NEG assert count(Rational(2, 3)) == DIV assert count(pi/3) == DIV assert count(-pi/3) == DIV + NEG assert count(I - 1) == SUB assert count(1 - I) == SUB assert count(1 - 2*I) == SUB + MUL assert count(x) is Integer(0) assert count(-x) == NEG assert count(-2*x/3) == NEG + DIV + MUL assert count(1/x) == DIV assert count(1/(x*y)) == DIV + MUL assert count(-1/x) == NEG + DIV assert count(-2/x) == NEG + DIV assert count(x/y) == DIV assert count(-x/y) == NEG + DIV assert count(x**2) == POW assert count(-x**2) == POW + NEG assert count(-2*x**2) == POW + MUL + NEG assert count(x + pi/3) == ADD + DIV assert count(x + Rational(1, 3)) == ADD + DIV assert count(x + y) == ADD assert count(x - y) == SUB assert count(y - x) == SUB assert count(-1/(x - y)) == DIV + NEG + SUB assert count(-1/(y - x)) == DIV + NEG + SUB assert count(1 + x**y) == ADD + POW assert count(1 + x + y) == 2*ADD assert count(1 + x + y + z) == 3*ADD assert count(1 + x**y + 2*x*y + y**2) == 3*ADD + 2*POW + 2*MUL assert count(2*z + y + x + 1) == 3*ADD + MUL assert count(2*z + y**17 + x + 1) == 3*ADD + MUL + POW assert count(2*z + y**17 + x + sin(x)) == 3*ADD + POW + MUL + SIN assert count(2*z + y**17 + x + sin(x**2)) == 3*ADD + MUL + 2*POW + SIN assert count(2*z + y**17 + x + sin( x**2) + exp(cos(x))) == 4*ADD + MUL + 3*POW + COS + SIN assert count(Derivative(x, x)) == D assert count(Integral(x, x) + 2*x/(1 + x)) == G + DIV + MUL + 2*ADD assert count(Basic()) is Integer(0) assert count({x + 1: sin(x)}) == ADD + SIN assert count([x + 1, sin(x) + y, None]) == ADD + SIN + ADD assert count({x + 1: sin(x), y: cos(x) + 1}) == SIN + COS + 2*ADD assert count({}) is Integer(0) assert count([x + 1, sin(x)*y, None]) == SIN + ADD + MUL assert count([]) is Integer(0) assert count(Basic()) == 0 assert count(Basic(Basic(), Basic(x, x + y))) == ADD + 2*BASIC assert count(Basic(x, x + y)) == ADD + BASIC assert count(Or(x, y)) == OR assert count(And(x, y)) == AND assert count(And(x**y, z)) == AND + POW assert count(Or(x, Or(y, And(z, a)))) == AND + OR assert count(Nor(x, y)) == NOT + OR assert count(Nand(x, y)) == NOT + AND assert count(Xor(x, y)) == XOR assert count(Implies(x, y)) == IMPLIES assert count(Equivalent(x, y)) == EQUIVALENT assert count(ITE(x, y, z)) == _ITE assert count([Or(x, y), And(x, y), Basic(x + y)]) == ADD + AND + BASIC + OR assert count(Basic(Tuple(x))) == BASIC + TUPLE # It checks that TUPLE is counted as an operation. assert count(Eq(x + y, 2)) == ADD
def an(self): """ First set of numerator parameters. """ return Tuple(*self.args[0][0])
def _eval_subs(self, old, new): """ Perform substitutions over non-dummy variables of an expression with limits. Also, can be used to specify point-evaluation of an abstract antiderivative. Examples ======== >>> from diofant import Sum, oo >>> from diofant.abc import s, n >>> Sum(1/n**s, (n, 1, oo)).subs(s, 2) Sum(n**(-2), (n, 1, oo)) >>> from diofant import Integral >>> from diofant.abc import x, a >>> Integral(a*x**2, x).subs(x, 4) Integral(a*x**2, (x, 4)) See Also ======== variables : Lists the integration variables change_index : Perform mapping on the sum and product dummy variables """ from diofant.core.function import AppliedUndef, UndefinedFunction func, limits = self.function, list(self.limits) # If one of the expressions we are replacing is used as a func index # one of two things happens. # - the old variable first appears as a free variable # so we perform all free substitutions before it becomes # a func index. # - the old variable first appears as a func index, in # which case we ignore. See change_index. # Reorder limits to match standard mathematical practice for scoping limits.reverse() if not isinstance(old, Symbol) or \ old.free_symbols.intersection(self.free_symbols): sub_into_func = True for i, xab in enumerate(limits): if 1 == len(xab) and old == xab[0]: xab = (old, old) limits[i] = Tuple(xab[0], *[l._subs(old, new) for l in xab[1:]]) if len(xab[0].free_symbols.intersection( old.free_symbols)) != 0: sub_into_func = False break if isinstance(old, AppliedUndef) or isinstance( old, UndefinedFunction): sy2 = set(self.variables).intersection(set(new.atoms(Symbol))) sy1 = set(self.variables).intersection(set(old.args)) if not sy2.issubset(sy1): raise ValueError( "substitution can not create dummy dependencies") sub_into_func = True if sub_into_func: func = func.subs(old, new) else: # old is a Symbol and a dummy variable of some limit for i, xab in enumerate(limits): if len(xab) == 3: limits[i] = Tuple(xab[0], *[l._subs(old, new) for l in xab[1:]]) if old == xab[0]: break # simplify redundant limits (x, x) to (x, ) for i, xab in enumerate(limits): if len(xab) == 2 and (xab[0] - xab[1]).is_zero: limits[i] = Tuple(xab[0], ) # Reorder limits back to representation-form limits.reverse() return self.func(func, *limits)