예제 #1
0
def test_octave_piecewise():
    expr = Piecewise((x, x < 1), (x**2, True))
    assert mcode(expr) == "((x < 1).*(x) + (~(x < 1)).*(x.^2))"
    assert mcode(expr,
                 assign_to="r") == ("r = ((x < 1).*(x) + (~(x < 1)).*(x.^2));")
    assert mcode(expr, assign_to="r", inline=False) == ("if (x < 1)\n"
                                                        "  r = x;\n"
                                                        "else\n"
                                                        "  r = x.^2;\n"
                                                        "end")
    expr = Piecewise((x**2, x < 1), (x**3, x < 2), (x**4, x < 3), (x**5, True))
    expected = ("((x < 1).*(x.^2) + (~(x < 1)).*( ...\n"
                "(x < 2).*(x.^3) + (~(x < 2)).*( ...\n"
                "(x < 3).*(x.^4) + (~(x < 3)).*(x.^5))))")
    assert mcode(expr) == expected
    assert mcode(expr, assign_to="r") == "r = " + expected + ";"
    assert mcode(expr, assign_to="r", inline=False) == ("if (x < 1)\n"
                                                        "  r = x.^2;\n"
                                                        "elseif (x < 2)\n"
                                                        "  r = x.^3;\n"
                                                        "elseif (x < 3)\n"
                                                        "  r = x.^4;\n"
                                                        "else\n"
                                                        "  r = x.^5;\n"
                                                        "end")
    # Check that Piecewise without a True (default) condition error
    expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
    pytest.raises(ValueError, lambda: mcode(expr))
예제 #2
0
def test_ccode_Piecewise_deep():
    p = ccode(2 * Piecewise((x, x < 1), (x + 1, x < 2), (x**2, True)))
    assert p == ("2*((x < 1) ? (\n"
                 "   x\n"
                 ")\n"
                 ": ((x < 2) ? (\n"
                 "   x + 1\n"
                 ")\n"
                 ": (\n"
                 "   pow(x, 2)\n"
                 ")))")
    expr = x * y * z + x**2 + y**2 + Piecewise((0, x < 0.5),
                                               (1, True)) + cos(z) - 1
    assert ccode(expr) == ("pow(x, 2) + x*y*z + pow(y, 2) + ((x < 0.5) ? (\n"
                           "   0\n"
                           ")\n"
                           ": (\n"
                           "   1\n"
                           ")) + cos(z) - 1")
    assert ccode(expr, assign_to='c') == (
        "c = pow(x, 2) + x*y*z + pow(y, 2) + ((x < 0.5) ? (\n"
        "   0\n"
        ")\n"
        ": (\n"
        "   1\n"
        ")) + cos(z) - 1;")
예제 #3
0
def test_deltaproduct_mul_add_x_kd_add_y_kd():
    assert dp((x + KD(i, k))*(y + KD(i, j)), (j, 1, 3)) == \
        KD(i, 1)*(KD(i, k) + x)*((KD(i, k) + x)*y)**2 + \
        KD(i, 2)*(KD(i, k) + x)*y*(KD(i, k) + x)**2*y + \
        KD(i, 3)*((KD(i, k) + x)*y)**2*(KD(i, k) + x) + \
        ((KD(i, k) + x)*y)**3
    assert dp((x + KD(i, k))*(y + KD(i, j)), (j, 1, 1)) == \
        (x + KD(i, k))*(y + KD(i, 1))
    assert dp((x + KD(i, k))*(y + KD(i, j)), (j, 2, 2)) == \
        (x + KD(i, k))*(y + KD(i, 2))
    assert dp((x + KD(i, k))*(y + KD(i, j)), (j, 3, 3)) == \
        (x + KD(i, k))*(y + KD(i, 3))
    assert dp((x + KD(i, k))*(y + KD(i, j)), (j, 1, k)) == \
        ((x + KD(i, k))*y)**k + Piecewise(
            (((x + KD(i, k))*y)**(i - 1)*(x + KD(i, k)) *
             ((x + KD(i, k))*y)**(-i + k), And(Integer(1) <= i, i <= k)),
            (0, True)
    )
    assert dp((x + KD(i, k))*(y + KD(i, j)), (j, k, 3)) == \
        ((x + KD(i, k))*y)**(4 - k) + Piecewise(
            (((x + KD(i, k))*y)**(i - k)*(x + KD(i, k)) *
             ((x + KD(i, k))*y)**(-i + 3), And(k <= i, i <= 3)),
            (0, True)
    )
    assert dp((x + KD(i, k))*(y + KD(i, j)), (j, k, l)) == \
        ((x + KD(i, k))*y)**(-k + l + 1) + Piecewise(
            (((x + KD(i, k))*y)**(i - k)*(x + KD(i, k)) *
             ((x + KD(i, k))*y)**(-i + l), And(k <= i, i <= l)),
            (0, True)
    )
예제 #4
0
def test_deltaproduct_mul_add_x_y_add_y_kd():
    assert dp((x + y)*(y + KD(i, j)), (j, 1, 3)) == ((x + y)*y)**3 + \
        (x + y)*((x + y)*y)**2*KD(i, 1) + \
        (x + y)*y*(x + y)**2*y*KD(i, 2) + \
        ((x + y)*y)**2*(x + y)*KD(i, 3)
    assert dp((x + y) * (y + KD(i, j)), (j, 1, 1)) == (x + y) * (y + KD(i, 1))
    assert dp((x + y) * (y + KD(i, j)), (j, 2, 2)) == (x + y) * (y + KD(i, 2))
    assert dp((x + y) * (y + KD(i, j)), (j, 3, 3)) == (x + y) * (y + KD(i, 3))
    assert dp((x + y)*(y + KD(i, j)), (j, 1, k)) == \
        ((x + y)*y)**k + Piecewise(
            (((x + y)*y)**(i - 1)*(x + y)*((x + y)*y)**(k - i),
             And(Integer(1) <= i, i <= k)),
            (0, True)
    )
    assert dp((x + y)*(y + KD(i, j)), (j, k, 3)) == \
        ((x + y)*y)**(-k + 4) + Piecewise(
            (((x + y)*y)**(i - k)*(x + y)*((x + y)*y)**(3 - i),
             And(k <= i, i <= 3)),
            (0, True)
    )
    assert dp((x + y)*(y + KD(i, j)), (j, k, l)) == \
        ((x + y)*y)**(-k + l + 1) + Piecewise(
            (((x + y)*y)**(i - k)*(x + y)*((x + y)*y)**(l - i),
             And(k <= i, i <= l)),
            (0, True)
    )
예제 #5
0
 def try_meijerg(function, xab):
     ret = None
     if len(xab) == 3 and meijerg is not False:
         x, a, b = xab
         try:
             res = meijerint_definite(function, x, a, b)
         except NotImplementedError:
             from diofant.integrals.meijerint import _debug
             _debug('NotImplementedError from meijerint_definite')
             res = None
         if res is not None:
             f, cond = res
             if conds == 'piecewise':
                 ret = Piecewise((f, cond),
                                 (self.func(function,
                                            (x, a, b)), True))
             elif conds == 'separate':
                 if len(self.limits) != 1:
                     raise ValueError(
                         'conds=separate not supported in '
                         'multiple integrals')
                 ret = f, cond
             else:
                 ret = f
     return ret
예제 #6
0
 def _eval_rewrite_as_Sum(self, ap, bq, z):
     from diofant.functions import factorial, RisingFactorial, Piecewise
     from diofant import Sum
     n = Dummy("n", integer=True)
     rfap = Tuple(*[RisingFactorial(a, n) for a in ap])
     rfbq = Tuple(*[RisingFactorial(b, n) for b in bq])
     coeff = Mul(*rfap) / Mul(*rfbq)
     return Piecewise((Sum(coeff * z**n / factorial(n),
                           (n, 0, oo)), self.convergence_statement),
                      (self, True))
예제 #7
0
def test_trigintegrate_odd():
    assert trigintegrate(Rational(1), x) == x
    assert trigintegrate(x, x) is None
    assert trigintegrate(x**2, x) is None

    assert trigintegrate(sin(x), x) == -cos(x)
    assert trigintegrate(cos(x), x) == sin(x)

    assert trigintegrate(sin(3 * x), x) == -cos(3 * x) / 3
    assert trigintegrate(cos(3 * x), x) == sin(3 * x) / 3

    y = Symbol('y')
    assert trigintegrate(sin(y*x), x) == \
        Piecewise((0, Eq(y, 0)), (-cos(y*x)/y, True))
    assert trigintegrate(cos(y*x), x) == \
        Piecewise((x, Eq(y, 0)), (sin(y*x)/y, True))
    assert trigintegrate(sin(y*x)**2, x) == \
        Piecewise((0, Eq(y, 0)), ((x*y/2 - sin(x*y)*cos(x*y)/2)/y, True))
    assert trigintegrate(sin(y*x)*cos(y*x), x) == \
        Piecewise((0, Eq(y, 0)), (sin(x*y)**2/(2*y), True))
    assert trigintegrate(cos(y*x)**2, x) == \
        Piecewise((x, Eq(y, 0)), ((x*y/2 + sin(x*y)*cos(x*y)/2)/y, True))

    y = Symbol('y', positive=True)
    # TODO: remove conds='none' below. For this to work we would have to rule
    #       out (e.g. by trying solve) the condition y = 0, incompatible with
    #       y.is_positive being True.
    assert trigintegrate(sin(y * x), x, conds='none') == -cos(y * x) / y
    assert trigintegrate(cos(y * x), x, conds='none') == sin(y * x) / y

    assert trigintegrate(sin(x) * cos(x), x) == sin(x)**2 / 2
    assert trigintegrate(sin(x) * cos(x)**2, x) == -cos(x)**3 / 3
    assert trigintegrate(sin(x)**2 * cos(x), x) == sin(x)**3 / 3

    # check if it selects right function to substitute,
    # so the result is kept simple
    assert trigintegrate(sin(x)**7 * cos(x), x) == sin(x)**8 / 8
    assert trigintegrate(sin(x) * cos(x)**7, x) == -cos(x)**8 / 8

    assert trigintegrate(sin(x)**7 * cos(x)**3, x) == \
        -sin(x)**10/10 + sin(x)**8/8
    assert trigintegrate(sin(x)**3 * cos(x)**7, x) == \
        cos(x)**10/10 - cos(x)**8/8
예제 #8
0
def _add_splines(c, b1, d, b2):
    """Construct c*b1 + d*b2."""
    if b1 == S.Zero or c == S.Zero:
        rv = piecewise_fold(d * b2)
    elif b2 == S.Zero or d == S.Zero:
        rv = piecewise_fold(c * b1)
    else:
        new_args = []
        n_intervals = len(b1.args)
        if n_intervals != len(b2.args):
            raise ValueError("Args of b1 and b2 are not equal")
        new_args.append((c * b1.args[0].expr, b1.args[0].cond))
        for i in range(1, n_intervals - 1):
            new_args.append((c * b1.args[i].expr + d * b2.args[i - 1].expr,
                             b1.args[i].cond))
        new_args.append((d * b2.args[-2].expr, b2.args[-2].cond))
        new_args.append(b2.args[-1])
        rv = Piecewise(*new_args)

    return rv.expand()
예제 #9
0
def test_jscode_Piecewise_deep():
    p = jscode(2*Piecewise((x, x < 1), (x**2, True)))
    s = \
"""\
2*((x < 1) ? (
   x
)
: (
   Math.pow(x, 2)
))\
"""
    assert p == s
예제 #10
0
def test_deltaproduct_mul_x_add_y_twokd():
    assert dp(x*(y + 2*KD(i, j)), (j, 1, 3)) == (x*y)**3 + \
        2*x*(x*y)**2*KD(i, 1) + 2*x*y*x*x*y*KD(i, 2) + 2*(x*y)**2*x*KD(i, 3)
    assert dp(x * (y + 2 * KD(i, j)), (j, 1, 1)) == x * (y + 2 * KD(i, 1))
    assert dp(x * (y + 2 * KD(i, j)), (j, 2, 2)) == x * (y + 2 * KD(i, 2))
    assert dp(x * (y + 2 * KD(i, j)), (j, 3, 3)) == x * (y + 2 * KD(i, 3))
    assert dp(x*(y + 2*KD(i, j)), (j, 1, k)) == \
        (x*y)**k + Piecewise(
            (2*(x*y)**(i - 1)*x*(x*y)**(k - i), And(Integer(1) <= i, i <= k)),
            (0, True)
    )
    assert dp(x*(y + 2*KD(i, j)), (j, k, 3)) == \
        (x*y)**(-k + 4) + Piecewise(
            (2*(x*y)**(i - k)*x*(x*y)**(3 - i), And(k <= i, i <= 3)),
            (0, True)
    )
    assert dp(x*(y + 2*KD(i, j)), (j, k, l)) == \
        (x*y)**(-k + l + 1) + Piecewise(
            (2*(x*y)**(i - k)*x*(x*y)**(l - i), And(k <= i, i <= l)),
            (0, True)
    )
예제 #11
0
def test_trick_indent_with_end_else_words():
    # words starting with "end" or "else" do not confuse the indenter
    t1 = sympify('endless')
    t2 = sympify('elsewhere')
    pw = Piecewise((t1, x < 0), (t2, x <= 1), (1, True))
    assert mcode(pw, inline=False) == ("if (x < 0)\n"
                                       "  endless\n"
                                       "elseif (x <= 1)\n"
                                       "  elsewhere\n"
                                       "else\n"
                                       "  1\n"
                                       "end")
예제 #12
0
def test_deltasummation_basic_numerical():
    n = symbols('n', integer=True, nonzero=True)
    assert ds(KD(n, 0), (n, 1, 3)) == 0

    # return unevaluated, until it gets implemented
    assert ds(KD(i**2, j**2), (j, -oo, oo)) == \
        Sum(KD(i**2, j**2), (j, -oo, oo))

    assert Piecewise((KD(i, k), And(Integer(1) <= i, i <= 3)), (0, True)) == \
        ds(KD(i, j)*KD(j, k), (j, 1, 3)) == \
        ds(KD(j, k)*KD(i, j), (j, 1, 3))

    assert ds(KD(i, k), (k, -oo, oo)) == 1
    assert ds(KD(i, k), (k, 0, oo)) == Piecewise((1, Integer(0) <= i),
                                                 (0, True))
    assert ds(KD(i, k), (k, 1, 3)) == \
        Piecewise((1, And(Integer(1) <= i, i <= 3)), (0, True))
    assert ds(k * KD(i, j) * KD(j, k), (k, -oo, oo)) == j * KD(i, j)
    assert ds(j * KD(i, j), (j, -oo, oo)) == i
    assert ds(i * KD(i, j), (i, -oo, oo)) == j
    assert ds(x, (i, 1, 3)) == 3 * x
    assert ds((i + j) * KD(i, j), (j, -oo, oo)) == 2 * i
예제 #13
0
def test_Matrix_printing():
    # Test returning a Matrix
    mat = Matrix([x*y, Piecewise((2 + x, y > 0), (y, True)), sin(z)])
    A = MatrixSymbol('A', 3, 1)
    assert jscode(mat, A) == (
        "A[0] = x*y;\n"
        "if (y > 0) {\n"
        "   A[1] = x + 2;\n"
        "}\n"
        "else {\n"
        "   A[1] = y;\n"
        "}\n"
        "A[2] = Math.sin(z);")
    # Test using MatrixElements in expressions
    expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0]
    assert jscode(expr) == (
        "((x > 0) ? (\n"
        "   2*A[2]\n"
        ")\n"
        ": (\n"
        "   A[2]\n"
        ")) + Math.sin(A[1]) + A[0]")
    # Test using MatrixElements in a Matrix
    q = MatrixSymbol('q', 5, 1)
    M = MatrixSymbol('M', 3, 3)
    m = Matrix([[sin(q[1, 0]), 0, cos(q[2, 0])],
                [q[1, 0] + q[2, 0], q[3, 0], 5],
                [2*q[4, 0]/q[1, 0], sqrt(q[0, 0]) + 4, 0]])
    assert jscode(m, M) == (
        "M[0] = Math.sin(q[1]);\n"
        "M[1] = 0;\n"
        "M[2] = Math.cos(q[2]);\n"
        "M[3] = q[1] + q[2];\n"
        "M[4] = q[3];\n"
        "M[5] = 5;\n"
        "M[6] = 2*q[4]*1/q[1];\n"
        "M[7] = 4 + Math.sqrt(q[0]);\n"
        "M[8] = 0;")
예제 #14
0
def test_deltasummation_mul_x_kd():
    assert ds(x*KD(i, j), (j, 1, 3)) == \
        Piecewise((x, And(Integer(1) <= i, i <= 3)), (0, True))
    assert ds(x * KD(i, j), (j, 1, 1)) == Piecewise((x, Eq(i, 1)), (0, True))
    assert ds(x * KD(i, j), (j, 2, 2)) == Piecewise((x, Eq(i, 2)), (0, True))
    assert ds(x * KD(i, j), (j, 3, 3)) == Piecewise((x, Eq(i, 3)), (0, True))
    assert ds(x*KD(i, j), (j, 1, k)) == \
        Piecewise((x, And(Integer(1) <= i, i <= k)), (0, True))
    assert ds(x*KD(i, j), (j, k, 3)) == \
        Piecewise((x, And(k <= i, i <= 3)), (0, True))
    assert ds(x*KD(i, j), (j, k, l)) == \
        Piecewise((x, And(k <= i, i <= l)), (0, True))
예제 #15
0
def test_deltasummation_basic_symbolic():
    assert ds(KD(i, j), (j, 1, 3)) == \
        Piecewise((1, And(Integer(1) <= i, i <= 3)), (0, True))
    assert ds(KD(i, j), (j, 1, 1)) == Piecewise((1, Eq(i, 1)), (0, True))
    assert ds(KD(i, j), (j, 2, 2)) == Piecewise((1, Eq(i, 2)), (0, True))
    assert ds(KD(i, j), (j, 3, 3)) == Piecewise((1, Eq(i, 3)), (0, True))
    assert ds(KD(i, j), (j, 1, k)) == \
        Piecewise((1, And(Integer(1) <= i, i <= k)), (0, True))
    assert ds(KD(i, j), (j, k, 3)) == \
        Piecewise((1, And(k <= i, i <= 3)), (0, True))
    assert ds(KD(i, j), (j, k, l)) == \
        Piecewise((1, And(k <= i, i <= l)), (0, True))
예제 #16
0
def test_jscode_Piecewise():
    expr = Piecewise((x, x < 1), (x**2, True))
    p = jscode(expr)
    s = \
"""\
((x < 1) ? (
   x
)
: (
   Math.pow(x, 2)
))\
"""
    assert p == s
    assert jscode(expr, assign_to="c") == (
    "if (x < 1) {\n"
    "   c = x;\n"
    "}\n"
    "else {\n"
    "   c = Math.pow(x, 2);\n"
    "}")
    # Check that Piecewise without a True (default) condition error
    expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
    pytest.raises(ValueError, lambda: jscode(expr))
예제 #17
0
def test_ccode_Piecewise():
    expr = Piecewise((x, x < 1), (x**2, True))
    assert ccode(expr) == ("((x < 1) ? (\n"
                           "   x\n"
                           ")\n"
                           ": (\n"
                           "   pow(x, 2)\n"
                           "))")
    assert ccode(expr, assign_to="c") == ("if (x < 1) {\n"
                                          "   c = x;\n"
                                          "}\n"
                                          "else {\n"
                                          "   c = pow(x, 2);\n"
                                          "}")
    expr = Piecewise((x, x < 1), (x + 1, x < 2), (x**2, True))
    assert ccode(expr) == ("((x < 1) ? (\n"
                           "   x\n"
                           ")\n"
                           ": ((x < 2) ? (\n"
                           "   x + 1\n"
                           ")\n"
                           ": (\n"
                           "   pow(x, 2)\n"
                           ")))")
    assert ccode(expr, assign_to='c') == ("if (x < 1) {\n"
                                          "   c = x;\n"
                                          "}\n"
                                          "else if (x < 2) {\n"
                                          "   c = x + 1;\n"
                                          "}\n"
                                          "else {\n"
                                          "   c = pow(x, 2);\n"
                                          "}")
    # Check that Piecewise without a True (default) condition error
    expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
    pytest.raises(ValueError, lambda: ccode(expr))
예제 #18
0
def test_deltasummation_mul_x_add_y_kd():
    assert ds(x*(y + KD(i, j)), (j, 1, 3)) == \
        Piecewise((3*x*y + x, And(Integer(1) <= i, i <= 3)), (3*x*y, True))
    assert ds(x*(y + KD(i, j)), (j, 1, 1)) == \
        Piecewise((x*y + x, Eq(i, 1)), (x*y, True))
    assert ds(x*(y + KD(i, j)), (j, 2, 2)) == \
        Piecewise((x*y + x, Eq(i, 2)), (x*y, True))
    assert ds(x*(y + KD(i, j)), (j, 3, 3)) == \
        Piecewise((x*y + x, Eq(i, 3)), (x*y, True))
    assert ds(x*(y + KD(i, j)), (j, 1, k)) == \
        Piecewise((k*x*y + x, And(Integer(1) <= i, i <= k)), (k*x*y, True))
    assert ds(x*(y + KD(i, j)), (j, k, 3)) == \
        Piecewise(((4 - k)*x*y + x, And(k <= i, i <= 3)), ((4 - k)*x*y, True))
    assert ds(x * (y + KD(i, j)), (j, k, l)) == Piecewise(
        ((l - k + 1) * x * y + x, And(k <= i, i <= l)),
        ((l - k + 1) * x * y, True))
예제 #19
0
    def _eval_rewrite_as_nonrep(self, *args):
        from diofant import Piecewise
        x, n = self.args[-1].extract_branch_factor(allow_half=True)
        minus = False
        newargs = self.args[:-1] + (x, )
        if not n.is_Integer:
            minus = True
            n -= Rational(1, 2)
        newerargs = newargs + (n, )
        if minus:
            small = self._expr_small_minus(*newargs)
            big = self._expr_big_minus(*newerargs)
        else:
            small = self._expr_small(*newargs)
            big = self._expr_big(*newerargs)

        if big == small:
            return small
        return Piecewise((big, abs(x) > 1), (small, True))
예제 #20
0
def test_deltasummation_mul_add_x_kd_add_y_kd():
    assert ds((x + KD(i, k)) * (y + KD(i, j)), (j, 1, 3)) == piecewise_fold(
        Piecewise((KD(i, k) + x, And(Integer(1) <= i, i <= 3)), (0, True)) +
        3 * (KD(i, k) + x) * y)
    assert ds((x + KD(i, k)) * (y + KD(i, j)), (j, 1, 1)) == piecewise_fold(
        Piecewise((KD(i, k) + x, Eq(i, 1)), (0, True)) + (KD(i, k) + x) * y)
    assert ds((x + KD(i, k)) * (y + KD(i, j)), (j, 2, 2)) == piecewise_fold(
        Piecewise((KD(i, k) + x, Eq(i, 2)), (0, True)) + (KD(i, k) + x) * y)
    assert ds((x + KD(i, k)) * (y + KD(i, j)), (j, 3, 3)) == piecewise_fold(
        Piecewise((KD(i, k) + x, Eq(i, 3)), (0, True)) + (KD(i, k) + x) * y)
    assert ds((x + KD(i, k)) * (y + KD(i, j)), (j, 1, k)) == piecewise_fold(
        Piecewise((KD(i, k) + x, And(Integer(1) <= i, i <= k)), (0, True)) +
        k * (KD(i, k) + x) * y)
    assert ds((x + KD(i, k)) * (y + KD(i, j)), (j, k, 3)) == piecewise_fold(
        Piecewise((KD(i, k) + x, And(k <= i, i <= 3)), (0, True)) + (4 - k) *
        (KD(i, k) + x) * y)
    assert ds((x + KD(i, k)) * (y + KD(i, j)), (j, k, l)) == piecewise_fold(
        Piecewise((KD(i, k) + x, And(k <= i, i <= l)), (0, True)) +
        (l - k + 1) * (KD(i, k) + x) * y)
예제 #21
0
def test_functions():
    one_var = (acosh, ln, Heaviside, factorial, bernoulli, coth, tanh, sign,
               arg, asin, DiracDelta, re, Abs, sinh, cos, cot, acos, acot,
               gamma, bell, harmonic, LambertW, zeta, log, factorial, asinh,
               acoth, cosh, dirichlet_eta, loggamma, erf, ceiling, im,
               fibonacci, conjugate, tan, floor, atanh, sin, atan, lucas, exp)
    two_var = (rf, ff, lowergamma, chebyshevu, chebyshevt, binomial, atan2,
               polygamma, hermite, legendre, uppergamma)
    others = (chebyshevt_root, chebyshevu_root, Eijk(x, y, z),
              Piecewise((0, x < -1), (x**2, x <= 1),
                        (x**3, True)), assoc_legendre)
    for cls in one_var:
        check(cls)
        c = cls(x)
        check(c)
    for cls in two_var:
        check(cls)
        c = cls(x, y)
        check(c)
    for cls in others:
        check(cls)
예제 #22
0
    def _eval_integral(self,
                       f,
                       x,
                       meijerg=None,
                       risch=None,
                       conds='piecewise'):
        """
        Calculate the anti-derivative to the function f(x).

        The following algorithms are applied (roughly in this order):

        1. Simple heuristics (based on pattern matching and integral table):

           - most frequently used functions (e.g. polynomials, products of trig functions)

        2. Integration of rational functions:

           - A complete algorithm for integrating rational functions is
             implemented (the Lazard-Rioboo-Trager algorithm).  The algorithm
             also uses the partial fraction decomposition algorithm
             implemented in apart() as a preprocessor to make this process
             faster.  Note that the integral of a rational function is always
             elementary, but in general, it may include a RootSum.

        3. Full Risch algorithm:

           - The Risch algorithm is a complete decision
             procedure for integrating elementary functions, which means that
             given any elementary function, it will either compute an
             elementary antiderivative, or else prove that none exists.
             Currently, part of transcendental case is implemented, meaning
             elementary integrals containing exponentials, logarithms, and
             (soon!) trigonometric functions can be computed.  The algebraic
             case, e.g., functions containing roots, is much more difficult
             and is not implemented yet.

           - If the routine fails (because the integrand is not elementary, or
             because a case is not implemented yet), it continues on to the
             next algorithms below.  If the routine proves that the integrals
             is nonelementary, it still moves on to the algorithms below,
             because we might be able to find a closed-form solution in terms
             of special functions.  If risch=True, however, it will stop here.

        4. The Meijer G-Function algorithm:

           - This algorithm works by first rewriting the integrand in terms of
             very general Meijer G-Function (meijerg in Diofant), integrating
             it, and then rewriting the result back, if possible.  This
             algorithm is particularly powerful for definite integrals (which
             is actually part of a different method of Integral), since it can
             compute closed-form solutions of definite integrals even when no
             closed-form indefinite integral exists.  But it also is capable
             of computing many indefinite integrals as well.

           - Another advantage of this method is that it can use some results
             about the Meijer G-Function to give a result in terms of a
             Piecewise expression, which allows to express conditionally
             convergent integrals.

           - Setting meijerg=True will cause integrate() to use only this
             method.

        5. The Heuristic Risch algorithm:

           - This is a heuristic version of the Risch algorithm, meaning that
             it is not deterministic.  This is tried as a last resort because
             it can be very slow.  It is still used because not enough of the
             full Risch algorithm is implemented, so that there are still some
             integrals that can only be computed using this method.  The goal
             is to implement enough of the Risch and Meijer G-function methods
             so that this can be deleted.
        """
        from diofant.integrals.deltafunctions import deltaintegrate
        from diofant.integrals.heurisch import heurisch, heurisch_wrapper
        from diofant.integrals.rationaltools import ratint
        from diofant.integrals.risch import risch_integrate

        if risch:
            try:
                return risch_integrate(f, x, conds=conds)
            except NotImplementedError:
                return

        # if it is a poly(x) then let the polynomial integrate itself (fast)
        #
        # It is important to make this check first, otherwise the other code
        # will return a diofant expression instead of a Polynomial.
        #
        # see Polynomial for details.
        if isinstance(f, Poly) and not meijerg:
            return f.integrate(x)

        # Piecewise antiderivatives need to call special integrate.
        if f.func is Piecewise:
            return f._eval_integral(x)

        # let's cut it short if `f` does not depend on `x`
        if not f.has(x):
            return f * x

        # try to convert to poly(x) and then integrate if successful (fast)
        poly = f.as_poly(x)

        if poly is not None and not meijerg:
            return poly.integrate().as_expr()

        if risch is not False:
            try:
                result, i = risch_integrate(f,
                                            x,
                                            separate_integral=True,
                                            conds=conds)
            except NotImplementedError:
                pass
            else:
                if i:
                    # There was a nonelementary integral. Try integrating it.
                    return result + i.doit(risch=False)
                else:
                    return result

        # since Integral(f=g1+g2+...) == Integral(g1) + Integral(g2) + ...
        # we are going to handle Add terms separately,
        # if `f` is not Add -- we only have one term

        # Note that in general, this is a bad idea, because Integral(g1) +
        # Integral(g2) might not be computable, even if Integral(g1 + g2) is.
        # For example, Integral(x**x + x**x*log(x)).  But many heuristics only
        # work term-wise.  So we compute this step last, after trying
        # risch_integrate.  We also try risch_integrate again in this loop,
        # because maybe the integral is a sum of an elementary part and a
        # nonelementary part (like erf(x) + exp(x)).  risch_integrate() is
        # quite fast, so this is acceptable.
        parts = []
        args = Add.make_args(f)
        for g in args:
            coeff, g = g.as_independent(x)

            # g(x) = const
            if g is S.One and not meijerg:
                parts.append(coeff * x)
                continue

            # g(x) = expr + O(x**n)
            order_term = g.getO()

            if order_term is not None:
                h = self._eval_integral(g.removeO(), x)

                if h is not None:
                    parts.append(coeff *
                                 (h + self.func(order_term, *self.limits)))
                    continue

                # NOTE: if there is O(x**n) and we fail to integrate then there is
                # no point in trying other methods because they will fail anyway.
                return

            #               c
            # g(x) = (a*x+b)
            if g.is_Pow and not g.exp.has(x) and not meijerg:
                a = Wild('a', exclude=[x])
                b = Wild('b', exclude=[x])

                M = g.base.match(a * x + b)

                if M is not None:
                    if g.exp == -1:
                        h = log(g.base)
                    elif conds != 'piecewise':
                        h = g.base**(g.exp + 1) / (g.exp + 1)
                    else:
                        h1 = log(g.base)
                        h2 = g.base**(g.exp + 1) / (g.exp + 1)
                        h = Piecewise((h1, Eq(g.exp, -1)), (h2, True))

                    parts.append(coeff * h / M[a])
                    continue

            #        poly(x)
            # g(x) = -------
            #        poly(x)
            if g.is_rational_function(x) and not meijerg:
                parts.append(coeff * ratint(g, x))
                continue

            if not meijerg:
                # g(x) = Mul(trig)
                h = trigintegrate(g, x, conds=conds)
                if h is not None:
                    parts.append(coeff * h)
                    continue

                # g(x) has at least a DiracDelta term
                h = deltaintegrate(g, x)
                if h is not None:
                    parts.append(coeff * h)
                    continue

                # Try risch again.
                if risch is not False:
                    try:
                        h, i = risch_integrate(g,
                                               x,
                                               separate_integral=True,
                                               conds=conds)
                    except NotImplementedError:
                        h = None
                    else:
                        if i:
                            h = h + i.doit(risch=False)

                        parts.append(coeff * h)
                        continue

                # fall back to heurisch
                try:
                    if conds == 'piecewise':
                        h = heurisch_wrapper(g, x, hints=[])
                    else:
                        h = heurisch(g, x, hints=[])
                except PolynomialError:
                    # XXX: this exception means there is a bug in the
                    # implementation of heuristic Risch integration
                    # algorithm.
                    h = None
            else:
                h = None

            if meijerg is not False and h is None:
                # rewrite using G functions
                try:
                    h = meijerint_indefinite(g, x)
                except NotImplementedError:
                    from diofant.integrals.meijerint import _debug
                    _debug('NotImplementedError from meijerint_definite')
                    res = None
                if h is not None:
                    parts.append(coeff * h)
                    continue

            # if we failed maybe it was because we had
            # a product that could have been expanded,
            # so let's try an expansion of the whole
            # thing before giving up; we don't try this
            # at the outset because there are things
            # that cannot be solved unless they are
            # NOT expanded e.g., x**x*(1+log(x)). There
            # should probably be a checker somewhere in this
            # routine to look for such cases and try to do
            # collection on the expressions if they are already
            # in an expanded form
            if not h and len(args) == 1:
                f = f.expand(mul=True, deep=False)
                if f.is_Add:
                    # Note: risch will be identical on the expanded
                    # expression, but maybe it will be able to pick out parts,
                    # like x*(exp(x) + erf(x)).
                    return self._eval_integral(f,
                                               x,
                                               meijerg=meijerg,
                                               risch=risch,
                                               conds=conds)

            if h is not None:
                parts.append(coeff * h)
            else:
                return

        return Add(*parts)
예제 #23
0
def bspline_basis(d, knots, n, x, close=True):
    """The `n`-th B-spline at `x` of degree `d` with knots.

    B-Splines are piecewise polynomials of degree `d` [1]_.  They are defined on
    a set of knots, which is a sequence of integers or floats.

    The 0th degree splines have a value of one on a single interval:

        >>> from diofant import bspline_basis
        >>> from diofant.abc import x
        >>> d = 0
        >>> knots = range(5)
        >>> bspline_basis(d, knots, 0, x)
        Piecewise((1, And(x <= 1, x >= 0)), (0, true))

    For a given ``(d, knots)`` there are ``len(knots)-d-1`` B-splines defined, that
    are indexed by ``n`` (starting at 0).

    Here is an example of a cubic B-spline:

        >>> bspline_basis(3, range(5), 0, x)
        Piecewise((x**3/6, And(x < 1, x >= 0)),
                  (-x**3/2 + 2*x**2 - 2*x + 2/3, And(x < 2, x >= 1)),
                  (x**3/2 - 4*x**2 + 10*x - 22/3, And(x < 3, x >= 2)),
                  (-x**3/6 + 2*x**2 - 8*x + 32/3, And(x <= 4, x >= 3)),
                  (0, true))

    By repeating knot points, you can introduce discontinuities in the
    B-splines and their derivatives:

        >>> d = 1
        >>> knots = [0,0,2,3,4]
        >>> bspline_basis(d, knots, 0, x)
        Piecewise((-x/2 + 1, And(x <= 2, x >= 0)), (0, true))

    It is quite time consuming to construct and evaluate B-splines. If you
    need to evaluate a B-splines many times, it is best to lambdify them
    first:

        >>> from diofant import lambdify
        >>> d = 3
        >>> knots = range(10)
        >>> b0 = bspline_basis(d, knots, 0, x)
        >>> f = lambdify(x, b0)
        >>> y = f(0.5)

    See Also
    ========

    diofant.functions.special.bsplines.bspline_basis_set

    References
    ==========

    .. [1] http://en.wikipedia.org/wiki/B-spline

    """
    knots = [sympify(k) for k in knots]
    d = int(d)
    n = int(n)
    n_knots = len(knots)
    n_intervals = n_knots - 1
    if n + d + 1 > n_intervals:
        raise ValueError('n + d + 1 must not exceed len(knots) - 1')
    if d == 0:
        result = Piecewise(
            (S.One, Interval(knots[n], knots[n + 1], False,
                             not close).contains(x)), (0, True))
    elif d > 0:
        denom = knots[n + d + 1] - knots[n + 1]
        if denom != S.Zero:
            B = (knots[n + d + 1] - x) / denom
            b2 = bspline_basis(d - 1, knots, n + 1, x, close)
        else:
            b2 = B = S.Zero

        denom = knots[n + d] - knots[n]
        if denom != S.Zero:
            A = (x - knots[n]) / denom
            b1 = bspline_basis(d - 1, knots, n, x, close
                               and (B == S.Zero or b2 == S.Zero))
        else:
            b1 = A = S.Zero

        result = _add_splines(A, b1, B, b2)
    else:
        raise ValueError('degree must be non-negative: %r' % n)
    return result
예제 #24
0
def trigintegrate(f, x, conds='piecewise'):
    """Integrate f = Mul(trig) over x

       >>> from diofant import Symbol, sin, cos, tan, sec, csc, cot
       >>> from diofant.integrals.trigonometry import trigintegrate
       >>> from diofant.abc import x

       >>> trigintegrate(sin(x)*cos(x), x)
       sin(x)**2/2

       >>> trigintegrate(sin(x)**2, x)
       x/2 - sin(x)*cos(x)/2

       >>> trigintegrate(tan(x)*sec(x), x)
       1/cos(x)

       >>> trigintegrate(sin(x)*tan(x), x)
       -log(sin(x) - 1)/2 + log(sin(x) + 1)/2 - sin(x)

       http://en.wikibooks.org/wiki/Calculus/Integration_techniques

    See Also
    ========

    diofant.integrals.integrals.Integral.doit
    diofant.integrals.integrals.Integral
    """
    from diofant.integrals.integrals import integrate
    pat, a, n, m = _pat_sincos(x)

    f = f.rewrite('sincos')
    M = f.match(pat)

    if M is None:
        return

    n, m = M[n], M[m]
    if n is S.Zero and m is S.Zero:
        return x
    zz = x if n is S.Zero else S.Zero

    a = M[a]

    if n.is_odd or m.is_odd:
        u = _u
        n_, m_ = n.is_odd, m.is_odd

        # take smallest n or m -- to choose simplest substitution
        if n_ and m_:
            n_ = n_ and (n < m)  # NB: careful here, one of the
            m_ = m_ and not (n < m)  # conditions *must* be true

        #  n      m       u=C        (n-1)/2    m
        # S(x) * C(x) dx  --> -(1-u^2)       * u  du
        if n_:
            ff = -(1 - u**2)**((n - 1) / 2) * u**m
            uu = cos(a * x)

        #  n      m       u=S   n         (m-1)/2
        # S(x) * C(x) dx  -->  u  * (1-u^2)       du
        elif m_:
            ff = u**n * (1 - u**2)**((m - 1) / 2)
            uu = sin(a * x)

        fi = integrate(ff, u)  # XXX cyclic deps
        fx = fi.subs(u, uu)
        if conds == 'piecewise':
            return Piecewise((zz, Eq(a, 0)), (fx / a, True))
        return fx / a

    # n & m are both even
    #
    #               2k      2m                         2l       2l
    # we transform S (x) * C (x) into terms with only S (x) or C (x)
    #
    # example:
    #  100     4       100        2    2    100          4         2
    # S (x) * C (x) = S (x) * (1-S (x))  = S (x) * (1 + S (x) - 2*S (x))
    #
    #                  104       102     100
    #               = S (x) - 2*S (x) + S (x)
    #       2k
    # then S   is integrated with recursive formula

    # take largest n or m -- to choose simplest substitution
    n_ = (abs(n) > abs(m))
    m_ = (abs(m) > abs(n))
    res = S.Zero

    if n_:
        #  2k         2 k             i             2i
        # C   = (1 - S )  = sum(i, (-) * B(k, i) * S  )
        if m > 0:
            for i in range(0, m // 2 + 1):
                res += ((-1)**i * binomial(m // 2, i) *
                        _sin_pow_integrate(n + 2 * i, x))

        elif m == 0:
            res = _sin_pow_integrate(n, x)
        else:

            #  m < 0 , |n| > |m|
            #   /
            #  |
            #  |    m       n
            #  | cos (x) sin (x) dx =
            #  |
            #  |
            # /
            #                                       /
            #                                      |
            #    -1        m+1     n-1     n - 1   |     m+2     n-2
            #  ________ cos (x) sin (x) + _______  |  cos (x) sin (x) dx
            #                                      |
            #    m + 1                     m + 1   |
            #                                     /

            res = (Rational(-1, m + 1) * cos(x)**(m + 1) * sin(x)**(n - 1) +
                   Rational(n - 1, m + 1) *
                   trigintegrate(cos(x)**(m + 2) * sin(x)**(n - 2), x))

    elif m_:
        #  2k         2 k            i             2i
        # S   = (1 - C ) = sum(i, (-) * B(k, i) * C  )
        if n > 0:

            #      /                            /
            #     |                            |
            #     |    m       n               |    -m         n
            #     | cos (x)*sin (x) dx  or     | cos (x) * sin (x) dx
            #     |                            |
            #    /                            /
            #
            #    |m| > |n| ; m, n >0 ; m, n belong to Z - {0}
            #       n                                         2
            #    sin (x) term is expanded here in terms of cos (x),
            #    and then integrated.
            #

            for i in range(0, n // 2 + 1):
                res += ((-1)**i * binomial(n // 2, i) *
                        _cos_pow_integrate(m + 2 * i, x))

        elif n == 0:

            #   /
            #  |
            #  |  1
            #  | _ _ _
            #  |    m
            #  | cos (x)
            # /
            #

            res = _cos_pow_integrate(m, x)
        else:

            #  n < 0 , |m| > |n|
            #   /
            #  |
            #  |    m       n
            #  | cos (x) sin (x) dx =
            #  |
            #  |
            # /
            #                                      /
            #                                     |
            #    1        m-1     n+1     m - 1   |     m-2     n+2
            #  _______ cos (x) sin (x) + _______  |  cos (x) sin (x) dx
            #                                     |
            #   n + 1                     n + 1   |
            #                                    /

            res = (Rational(1, n + 1) * cos(x)**(m - 1) * sin(x)**(n + 1) +
                   Rational(m - 1, n + 1) *
                   trigintegrate(cos(x)**(m - 2) * sin(x)**(n + 2), x))

    else:
        if m == n:
            # Substitute sin(2x)/2 for sin(x)cos(x) and then Integrate.
            res = integrate((Rational(1, 2) * sin(2 * x))**m, x)
        elif (m == -n):
            if n < 0:
                # Same as the scheme described above.
                # the function argument to integrate in the end will
                # be 1 , this cannot be integrated by trigintegrate.
                # Hence use diofant.integrals.integrate.
                res = (Rational(1, n + 1) * cos(x)**(m - 1) * sin(x)**(n + 1) +
                       Rational(m - 1, n + 1) *
                       integrate(cos(x)**(m - 2) * sin(x)**(n + 2), x))
            else:
                res = (
                    Rational(-1, m + 1) * cos(x)**(m + 1) * sin(x)**(n - 1) +
                    Rational(n - 1, m + 1) *
                    integrate(cos(x)**(m + 2) * sin(x)**(n - 2), x))
    if conds == 'piecewise':
        return Piecewise((zz, Eq(a, 0)), (res.subs(x, a * x) / a, True))
    return res.subs(x, a * x) / a
예제 #25
0
def test_octave_piecewise_times_const():
    pw = Piecewise((x, x < 1), (x**2, True))
    assert mcode(2 * pw) == "2*((x < 1).*(x) + (~(x < 1)).*(x.^2))"
    assert mcode(pw / x) == "((x < 1).*(x) + (~(x < 1)).*(x.^2))./x"
    assert mcode(pw / (x * y)) == "((x < 1).*(x) + (~(x < 1)).*(x.^2))./(x.*y)"
    assert mcode(pw / 3) == "((x < 1).*(x) + (~(x < 1)).*(x.^2))/3"
예제 #26
0
def test_deltasummation_mul_add_x_y_add_kd_kd():
    assert ds((x + y) * (KD(i, k) + KD(j, k)), (k, 1, 3)) == piecewise_fold(
        Piecewise((x + y, And(Integer(1) <= i, i <= 3)), (0, True)) +
        Piecewise((x + y, And(Integer(1) <= j, j <= 3)), (0, True)))
    assert ds((x + y) * (KD(i, k) + KD(j, k)), (k, 1, 1)) == piecewise_fold(
        Piecewise((x + y, Eq(i, 1)), (0, True)) +
        Piecewise((x + y, Eq(j, 1)), (0, True)))
    assert ds((x + y) * (KD(i, k) + KD(j, k)), (k, 2, 2)) == piecewise_fold(
        Piecewise((x + y, Eq(i, 2)), (0, True)) +
        Piecewise((x + y, Eq(j, 2)), (0, True)))
    assert ds((x + y) * (KD(i, k) + KD(j, k)), (k, 3, 3)) == piecewise_fold(
        Piecewise((x + y, Eq(i, 3)), (0, True)) +
        Piecewise((x + y, Eq(j, 3)), (0, True)))
    assert ds((x + y) * (KD(i, k) + KD(j, k)), (k, 1, l)) == piecewise_fold(
        Piecewise((x + y, And(Integer(1) <= i, i <= l)), (0, True)) +
        Piecewise((x + y, And(Integer(1) <= j, j <= l)), (0, True)))
    assert ds((x + y) * (KD(i, k) + KD(j, k)), (k, l, 3)) == piecewise_fold(
        Piecewise((x + y, And(l <= i, i <= 3)), (0, True)) +
        Piecewise((x + y, And(l <= j, j <= 3)), (0, True)))
    assert ds((x + y) * (KD(i, k) + KD(j, k)), (k, l, m)) == piecewise_fold(
        Piecewise((x + y, And(l <= i, i <= m)), (0, True)) +
        Piecewise((x + y, And(l <= j, j <= m)), (0, True)))
예제 #27
0
def test_rewrite_as_Piecewise():
    x, y = symbols('x, y', real=True)
    assert (Max(x, y).rewrite(Piecewise) == x * Piecewise(
        (1, x - y > 0), (Rational(1, 2), Eq(x - y, 0)),
        (0, true)) + y * Piecewise((1, -x + y > 0),
                                   (Rational(1, 2), Eq(-x + y, 0)), (0, true)))
예제 #28
0
def roots_quartic(f):
    r"""
    Returns a list of roots of a quartic polynomial.

    There are many references for solving quartic expressions available [1-5].
    This reviewer has found that many of them require one to select from among
    2 or more possible sets of solutions and that some solutions work when one
    is searching for real roots but don't work when searching for complex roots
    (though this is not always stated clearly). The following routine has been
    tested and found to be correct for 0, 2 or 4 complex roots.

    The quasisymmetric case solution [6] looks for quartics that have the form
    `x**4 + A*x**3 + B*x**2 + C*x + D = 0` where `(C/A)**2 = D`.

    Although no general solution that is always applicable for all
    coefficients is known to this reviewer, certain conditions are tested
    to determine the simplest 4 expressions that can be returned:

      1) `f = c + a*(a**2/8 - b/2) == 0`
      2) `g = d - a*(a*(3*a**2/256 - b/16) + c/4) = 0`
      3) if `f != 0` and `g != 0` and `p = -d + a*c/4 - b**2/12` then
        a) `p == 0`
        b) `p != 0`

    Examples
    ========

        >>> from diofant import Poly, symbols, I

        >>> r = roots_quartic(Poly('x**4-6*x**3+17*x**2-26*x+20'))

        >>> # 4 complex roots: 1+-I*sqrt(3), 2+-I
        >>> sorted(str(tmp.evalf(n=2)) for tmp in r)
        ['1.0 + 1.7*I', '1.0 - 1.7*I', '2.0 + 1.0*I', '2.0 - 1.0*I']

    References
    ==========

    .. [1] http://mathforum.org/dr.math/faq/faq.cubic.equations.html
    .. [2] http://en.wikipedia.org/wiki/Quartic_function#Summary_of_Ferrari.27s_method
    .. [3] http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html
    .. [4] http://staff.bath.ac.uk/masjhd/JHD-CA.pdf
    .. [5] http://www.albmath.org/files/Math_5713.pdf
    .. [6] http://www.statemaster.com/encyclopedia/Quartic-equation
    .. [7] eqworld.ipmnet.ru/en/solutions/ae/ae0108.pdf
    """
    _, a, b, c, d = f.monic().all_coeffs()

    if not d:
        return [S.Zero] + roots([1, a, b, c], multiple=True)
    elif (c/a)**2 == d:
        x, m = f.gen, c/a

        g = Poly(x**2 + a*x + b - 2*m, x)

        z1, z2 = roots_quadratic(g)

        h1 = Poly(x**2 - z1*x + m, x)
        h2 = Poly(x**2 - z2*x + m, x)

        r1 = roots_quadratic(h1)
        r2 = roots_quadratic(h2)

        return r1 + r2
    else:
        a2 = a**2
        e = b - 3*a2/8
        f = c + a*(a2/8 - b/2)
        g = d - a*(a*(3*a2/256 - b/16) + c/4)
        aon4 = a/4

        if f is S.Zero:
            y1, y2 = [sqrt(tmp) for tmp in
                      roots([1, e, g], multiple=True)]
            return [tmp - aon4 for tmp in [-y1, -y2, y1, y2]]
        if g is S.Zero:
            y = [S.Zero] + roots([1, 0, e, f], multiple=True)
            return [tmp - aon4 for tmp in y]
        else:
            # Descartes-Euler method, see [7]
            sols = _roots_quartic_euler(e, f, g, aon4)
            if sols:
                return sols
            # Ferrari method, see [1, 2]
            a2 = a**2
            e = b - 3*a2/8
            f = c + a*(a2/8 - b/2)
            g = d - a*(a*(3*a2/256 - b/16) + c/4)
            p = -e**2/12 - g
            q = -e**3/108 + e*g/3 - f**2/8
            TH = Rational(1, 3)

            def _ans(y):
                w = sqrt(e + 2*y)
                arg1 = 3*e + 2*y
                arg2 = 2*f/w
                ans = []
                for s in [-1, 1]:
                    root = sqrt(-(arg1 + s*arg2))
                    for t in [-1, 1]:
                        ans.append((s*w - t*root)/2 - aon4)
                return ans

            # p == 0 case
            y1 = -5*e/6 - q**TH
            if p.is_zero:
                return _ans(y1)

            # if p != 0 then u below is not 0
            root = sqrt(q**2/4 + p**3/27)
            r = -q/2 + root  # or -q/2 - root
            u = r**TH  # primary root of solve(x**3 - r, x)
            y2 = -5*e/6 + u - p/u/3
            if p.is_nonzero:
                return _ans(y2)

            # sort it out once they know the values of the coefficients
            return [Piecewise((a1, Eq(p, 0)), (a2, True))
                for a1, a2 in zip(_ans(y1), _ans(y2))]
예제 #29
0
def test_Piecewise():
    g = Piecewise((0, Or(x <= -1, x >= 1)), (1 - x, x > 0), (1 + x, True))

    assert (mcode(g) ==
            'Piecewise[{{0, x >= 1 || x <= -1}, '
            '{-x + 1, x > 0}, {x + 1, True}}]')
예제 #30
0
def deltasummation(f, limit, no_piecewise=False):
    """Handle summations containing a KroneckerDelta.

    The idea for summation is the following:

    - If we are dealing with a KroneckerDelta expression, i.e. KroneckerDelta(g(x), j),
      we try to simplify it.

      If we could simplify it, then we sum the resulting expression.
      We already know we can sum a simplified expression, because only
      simple KroneckerDelta expressions are involved.

      If we couldn't simplify it, there are two cases:

      1) The expression is a simple expression: we return the summation,
         taking care if we are dealing with a Derivative or with a proper
         KroneckerDelta.

      2) The expression is not simple (i.e. KroneckerDelta(cos(x))): we can do
         nothing at all.

    - If the expr is a multiplication expr having a KroneckerDelta term:

      First we expand it.

      If the expansion did work, then we try to sum the expansion.

      If not, we try to extract a simple KroneckerDelta term, then we have two
      cases:

      1) We have a simple KroneckerDelta term, so we return the summation.

      2) We didn't have a simple term, but we do have an expression with
         simplified KroneckerDelta terms, so we sum this expression.

    Examples
    ========

    >>> from diofant import oo, symbols
    >>> from diofant.abc import k
    >>> i, j = symbols('i, j', integer=True, finite=True)
    >>> from diofant import KroneckerDelta, Piecewise
    >>> deltasummation(KroneckerDelta(i, k), (k, -oo, oo))
    1
    >>> deltasummation(KroneckerDelta(i, k), (k, 0, oo))
    Piecewise((1, 0 <= i), (0, true))
    >>> deltasummation(KroneckerDelta(i, k), (k, 1, 3))
    Piecewise((1, And(1 <= i, i <= 3)), (0, true))
    >>> deltasummation(k*KroneckerDelta(i, j)*KroneckerDelta(j, k), (k, -oo, oo))
    j*KroneckerDelta(i, j)
    >>> deltasummation(j*KroneckerDelta(i, j), (j, -oo, oo))
    i
    >>> deltasummation(i*KroneckerDelta(i, j), (i, -oo, oo))
    j

    See Also
    ========

    deltaproduct
    diofant.functions.special.tensor_functions.KroneckerDelta
    diofant.concrete.sums.summation
    """
    from diofant.concrete.summations import summation
    from diofant.solvers import solve

    if ((limit[2] - limit[1]) < 0) is S.true:
        return S.Zero

    if not f.has(KroneckerDelta):
        return summation(f, limit)

    x = limit[0]

    g = _expand_delta(f, x)
    if g.is_Add:
        return piecewise_fold(
            g.func(*[deltasummation(h, limit, no_piecewise) for h in g.args]))

    # try to extract a simple KroneckerDelta term
    delta, expr = _extract_delta(g, x)

    if not delta:
        return summation(f, limit)

    solns = solve(delta.args[0] - delta.args[1], x)
    if len(solns) == 0:
        return S.Zero
    elif len(solns) != 1:
        return Sum(f, limit)
    value = solns[0]
    if no_piecewise:
        return expr.subs(x, value)
    return Piecewise(
        (expr.subs(x, value), Interval(*limit[1:3]).as_relational(value)),
        (S.Zero, True))