def test_sparse_zeros_sparse_eye(): assert SparseMatrix.eye(3) == eye(3, cls=SparseMatrix) assert len(SparseMatrix.eye(3)._smat) == 3 assert SparseMatrix.zeros(3) == zeros(3, cls=SparseMatrix) assert len(SparseMatrix.zeros(3)._smat) == 0
def sparse_zeros(n): return SparseMatrix.zeros(n)
def test_sparse_matrix(): def sparse_eye(n): return SparseMatrix.eye(n) def sparse_zeros(n): return SparseMatrix.zeros(n) # creation args pytest.raises(TypeError, lambda: SparseMatrix(1, 2)) pytest.raises(ValueError, lambda: SparseMatrix(2, 2, (1, 3, 4, 5, 6))) a = SparseMatrix(( (1, 0), (0, 1) )) assert SparseMatrix(a) == a a = MutableSparseMatrix([]) b = MutableDenseMatrix([1, 2]) assert a.row_join(b) == b assert a.col_join(b) == b assert type(a.row_join(b)) == type(a) assert type(a.col_join(b)) == type(a) # test element assignment a = SparseMatrix(( (1, 0), (0, 1) )) a[3] = 4 assert a[1, 1] == 4 a[3] = 1 a[0, 0] = 2 assert a == SparseMatrix(( (2, 0), (0, 1) )) a[1, 0] = 5 assert a == SparseMatrix(( (2, 0), (5, 1) )) a[1, 1] = 0 assert a == SparseMatrix(( (2, 0), (5, 0) )) assert a._smat == {(0, 0): 2, (1, 0): 5} # test_multiplication a = SparseMatrix(( (1, 2), (3, 1), (0, 6), )) b = SparseMatrix(( (1, 2), (3, 0), )) c = a*b assert c[0, 0] == 7 assert c[0, 1] == 2 assert c[1, 0] == 6 assert c[1, 1] == 6 assert c[2, 0] == 18 assert c[2, 1] == 0 c = b * x assert isinstance(c, SparseMatrix) assert c[0, 0] == x assert c[0, 1] == 2*x assert c[1, 0] == 3*x assert c[1, 1] == 0 c = 5 * b assert isinstance(c, SparseMatrix) assert c[0, 0] == 5 assert c[0, 1] == 2*5 assert c[1, 0] == 3*5 assert c[1, 1] == 0 # test_power A = SparseMatrix([[2, 3], [4, 5]]) assert (A**5)[:] == [6140, 8097, 10796, 14237] A = SparseMatrix([[2, 1, 3], [4, 2, 4], [6, 12, 1]]) assert (A**3)[:] == [290, 262, 251, 448, 440, 368, 702, 954, 433] # test_creation a = SparseMatrix([[x, 0], [0, 0]]) m = a assert m.cols == m.rows assert m.cols == 2 assert m[:] == [x, 0, 0, 0] b = SparseMatrix(2, 2, [x, 0, 0, 0]) m = b assert m.cols == m.rows assert m.cols == 2 assert m[:] == [x, 0, 0, 0] assert a == b S = sparse_eye(3) del S[1, :] assert S == SparseMatrix([ [1, 0, 0], [0, 0, 1]]) S = sparse_eye(3) del S[:, 1] assert S == SparseMatrix([ [1, 0], [0, 0], [0, 1]]) S = SparseMatrix.eye(3) S[2, 1] = 2 S.col_swap(1, 0) assert S == SparseMatrix([[0, 1, 0], [1, 0, 0], [2, 0, 1]]) S.row_swap(0, 1) assert S == SparseMatrix([[1, 0, 0], [0, 1, 0], [2, 0, 1]]) S.col_swap(0, 1) assert S == SparseMatrix([[0, 1, 0], [1, 0, 0], [0, 2, 1]]) S.row_swap(0, 2) assert S == SparseMatrix([[0, 2, 1], [1, 0, 0], [0, 1, 0]]) S.col_swap(0, 2) assert S == SparseMatrix([[1, 2, 0], [0, 0, 1], [0, 1, 0]]) a = SparseMatrix(1, 2, [1, 2]) b = a.copy() c = a.copy() assert a[0] == 1 del a[0, :] assert a == SparseMatrix(0, 2, []) del b[:, 1] assert b == SparseMatrix(1, 1, [1]) # test_determinant assert SparseMatrix(1, 1, [0]).det() == 0 assert SparseMatrix([[1]]).det() == 1 assert SparseMatrix(((-3, 2), (8, -5))).det() == -1 assert SparseMatrix(((x, 1), (y, 2*y))).det() == 2*x*y - y assert SparseMatrix(( (1, 1, 1), (1, 2, 3), (1, 3, 6) )).det() == 1 assert SparseMatrix(( ( 3, -2, 0, 5), (-2, 1, -2, 2), ( 0, -2, 5, 0), ( 5, 0, 3, 4) )).det() == -289 assert SparseMatrix(( ( 1, 2, 3, 4), ( 5, 6, 7, 8), ( 9, 10, 11, 12), (13, 14, 15, 16) )).det() == 0 assert SparseMatrix(( (3, 2, 0, 0, 0), (0, 3, 2, 0, 0), (0, 0, 3, 2, 0), (0, 0, 0, 3, 2), (2, 0, 0, 0, 3) )).det() == 275 assert SparseMatrix(( (1, 0, 1, 2, 12), (2, 0, 1, 1, 4), (2, 1, 1, -1, 3), (3, 2, -1, 1, 8), (1, 1, 1, 0, 6) )).det() == -55 assert SparseMatrix(( (-5, 2, 3, 4, 5), ( 1, -4, 3, 4, 5), ( 1, 2, -3, 4, 5), ( 1, 2, 3, -2, 5), ( 1, 2, 3, 4, -1) )).det() == 11664 assert SparseMatrix(( ( 2, 7, -1, 3, 2), ( 0, 0, 1, 0, 1), (-2, 0, 7, 0, 2), (-3, -2, 4, 5, 3), ( 1, 0, 0, 0, 1) )).det() == 123 # test_slicing m0 = sparse_eye(4) assert m0[:3, :3] == sparse_eye(3) assert m0[2:4, 0:2] == sparse_zeros(2) m1 = SparseMatrix(3, 3, lambda i, j: i + j) assert m1[0, :] == SparseMatrix(1, 3, (0, 1, 2)) assert m1[1:3, 1] == SparseMatrix(2, 1, (2, 3)) m2 = SparseMatrix( [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]) assert m2[:, -1] == SparseMatrix(4, 1, [3, 7, 11, 15]) assert m2[-2:, :] == SparseMatrix([[8, 9, 10, 11], [12, 13, 14, 15]]) assert SparseMatrix([[1, 2], [3, 4]])[[1], [1]] == Matrix([[4]]) # test_submatrix_assignment m = sparse_zeros(4) m[2:4, 2:4] = sparse_eye(2) assert m == SparseMatrix([(0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)]) assert len(m._smat) == 2 m[:2, :2] = sparse_eye(2) assert m == sparse_eye(4) m[:, 0] = SparseMatrix(4, 1, (1, 2, 3, 4)) assert m == SparseMatrix([(1, 0, 0, 0), (2, 1, 0, 0), (3, 0, 1, 0), (4, 0, 0, 1)]) m[:, :] = sparse_zeros(4) assert m == sparse_zeros(4) m[:, :] = ((1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16)) assert m == SparseMatrix((( 1, 2, 3, 4), ( 5, 6, 7, 8), ( 9, 10, 11, 12), (13, 14, 15, 16))) m[:2, 0] = [0, 0] assert m == SparseMatrix((( 0, 2, 3, 4), ( 0, 6, 7, 8), ( 9, 10, 11, 12), (13, 14, 15, 16))) # test_reshape m0 = sparse_eye(3) assert m0.reshape(1, 9) == SparseMatrix(1, 9, (1, 0, 0, 0, 1, 0, 0, 0, 1)) m1 = SparseMatrix(3, 4, lambda i, j: i + j) assert m1.reshape(4, 3) == \ SparseMatrix([(0, 1, 2), (3, 1, 2), (3, 4, 2), (3, 4, 5)]) assert m1.reshape(2, 6) == \ SparseMatrix([(0, 1, 2, 3, 1, 2), (3, 4, 2, 3, 4, 5)]) # test_applyfunc m0 = sparse_eye(3) assert m0.applyfunc(lambda x: 2*x) == sparse_eye(3)*2 assert m0.applyfunc(lambda x: 0 ) == sparse_zeros(3) # test_LUdecomp testmat = SparseMatrix([[ 0, 2, 5, 3], [ 3, 3, 7, 4], [ 8, 4, 0, 2], [-2, 6, 3, 4]]) L, U, p = testmat.LUdecomposition() assert L.is_lower assert U.is_upper assert (L*U).permuteBkwd(p) - testmat == sparse_zeros(4) testmat = SparseMatrix([[ 6, -2, 7, 4], [ 0, 3, 6, 7], [ 1, -2, 7, 4], [-9, 2, 6, 3]]) L, U, p = testmat.LUdecomposition() assert L.is_lower assert U.is_upper assert (L*U).permuteBkwd(p) - testmat == sparse_zeros(4) M = Matrix(((1, x, 1), (2, y, 0), (y, 0, z))) L, U, p = M.LUdecomposition() assert L.is_lower assert U.is_upper assert (L*U).permuteBkwd(p) - M == sparse_zeros(3) # test_LUsolve A = SparseMatrix([[2, 3, 5], [3, 6, 2], [8, 3, 6]]) B = SparseMatrix(3, 1, [3, 7, 5]) b = A*B soln = A.LUsolve(b) assert soln == B A = SparseMatrix([[0, -1, 2], [5, 10, 7], [8, 3, 4]]) B = SparseMatrix(3, 1, [-1, 2, 5]) b = A*B soln = A.LUsolve(b) assert soln == B # test_inverse A = sparse_eye(4) assert A.inv() == sparse_eye(4) assert A.inv(method="CH") == sparse_eye(4) assert A.inv(method="LDL") == sparse_eye(4) A = SparseMatrix([[2, 3, 5], [3, 6, 2], [7, 2, 6]]) Ainv = SparseMatrix(Matrix(A).inv()) assert A*Ainv == sparse_eye(3) assert A.inv(method="CH") == Ainv assert A.inv(method="LDL") == Ainv A = SparseMatrix([[2, 3, 5], [3, 6, 2], [5, 2, 6]]) Ainv = SparseMatrix(Matrix(A).inv()) assert A*Ainv == sparse_eye(3) assert A.inv(method="CH") == Ainv assert A.inv(method="LDL") == Ainv # test_cross v1 = Matrix(1, 3, [1, 2, 3]) v2 = Matrix(1, 3, [3, 4, 5]) assert v1.cross(v2) == Matrix(1, 3, [-2, 4, -2]) assert v1.norm(2)**2 == 14 # conjugate a = SparseMatrix(((1, 2 + I), (3, 4))) assert a.C == SparseMatrix([ [1, 2 - I], [3, 4] ]) # mul assert a*Matrix(2, 2, [1, 0, 0, 1]) == a assert a + Matrix(2, 2, [1, 1, 1, 1]) == SparseMatrix([ [2, 3 + I], [4, 5] ]) assert a*0 == Matrix([[0, 0], [0, 0]]) # col join assert a.col_join(sparse_eye(2)) == SparseMatrix([ [1, 2 + I], [3, 4], [1, 0], [0, 1] ]) A = SparseMatrix(ones(3)) B = eye(3) assert A.col_join(B) == Matrix([[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 0, 0], [0, 1, 0], [0, 0, 1]]) # row join A = SparseMatrix(((1, 0, 1), (0, 1, 0), (1, 1, 0))) B = Matrix(((1, 0, 0), (0, 1, 0), (0, 0, 1))) assert A.row_join(B) == Matrix([[1, 0, 1, 1, 0, 0], [0, 1, 0, 0, 1, 0], [1, 1, 0, 0, 0, 1]]) # symmetric assert not a.is_symmetric(simplify=False) assert sparse_eye(3).is_symmetric(simplify=False) # test_cofactor assert sparse_eye(3) == sparse_eye(3).cofactorMatrix() test = SparseMatrix([[1, 3, 2], [2, 6, 3], [2, 3, 6]]) assert test.cofactorMatrix() == \ SparseMatrix([[27, -6, -6], [-12, 2, 3], [-3, 1, 0]]) test = SparseMatrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) assert test.cofactorMatrix() == \ SparseMatrix([[-3, 6, -3], [6, -12, 6], [-3, 6, -3]]) # test_jacobian L = SparseMatrix(1, 2, [x**2*y, 2*y**2 + x*y]) syms = [x, y] assert L.jacobian(syms) == Matrix([[2*x*y, x**2], [y, 4*y + x]]) L = SparseMatrix(1, 2, [x, x**2*y**3]) assert L.jacobian(syms) == SparseMatrix([[1, 0], [2*x*y**3, x**2*3*y**2]]) # test_QR A = Matrix([[1, 2], [2, 3]]) Q, S = A.QRdecomposition() R = Rational assert Q == Matrix([ [ 5**R(-1, 2), (R(2)/5)*(R(1)/5)**R(-1, 2)], [2*5**R(-1, 2), (-R(1)/5)*(R(1)/5)**R(-1, 2)]]) assert S == Matrix([ [5**R(1, 2), 8*5**R(-1, 2)], [ 0, (R(1)/5)**R(1, 2)]]) assert Q*S == A assert Q.T * Q == sparse_eye(2) R = Rational # test nullspace # first test reduced row-ech form M = SparseMatrix([[5, 7, 2, 1], [1, 6, 2, -1]]) out, tmp = M.rref() assert out == Matrix([[1, 0, -R(2)/23, R(13)/23], [0, 1, R(8)/23, R(-6)/23]]) M = SparseMatrix([[ 1, 3, 0, 2, 6, 3, 1], [-2, -6, 0, -2, -8, 3, 1], [ 3, 9, 0, 0, 6, 6, 2], [-1, -3, 0, 1, 0, 9, 3]]) out, tmp = M.rref() assert out == Matrix([[1, 3, 0, 0, 2, 0, 0], [0, 0, 0, 1, 2, 0, 0], [0, 0, 0, 0, 0, 1, R(1)/3], [0, 0, 0, 0, 0, 0, 0]]) # now check the vectors basis = M.nullspace() assert basis[0] == Matrix([-3, 1, 0, 0, 0, 0, 0]) assert basis[1] == Matrix([0, 0, 1, 0, 0, 0, 0]) assert basis[2] == Matrix([-2, 0, 0, -2, 1, 0, 0]) assert basis[3] == Matrix([0, 0, 0, 0, 0, R(-1)/3, 1]) # test eigen sparse_eye3 = sparse_eye(3) assert sparse_eye3.charpoly(x) == PurePoly(((x - 1)**3)) assert sparse_eye3.charpoly(y) == PurePoly(((y - 1)**3)) # test values M = Matrix([( 0, 1, -1), ( 1, 1, 0), (-1, 0, 1)]) vals = M.eigenvals() assert sorted(vals) == [-1, 1, 2] R = Rational M = Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) assert M.eigenvects() == [(1, 3, [ Matrix([1, 0, 0]), Matrix([0, 1, 0]), Matrix([0, 0, 1])])] M = Matrix([[5, 0, 2], [3, 2, 0], [0, 0, 1]]) assert M.eigenvects() == [(1, 1, [Matrix([R(-1)/2, R(3)/2, 1])]), (2, 1, [Matrix([0, 1, 0])]), (5, 1, [Matrix([1, 1, 0])])] assert M.zeros(3, 5) == SparseMatrix(3, 5, {}) A = SparseMatrix(10, 10, {(0, 0): 18, (0, 9): 12, (1, 4): 18, (2, 7): 16, (3, 9): 12, (4, 2): 19, (5, 7): 16, (6, 2): 12, (9, 7): 18}) assert A.row_list() == [(0, 0, 18), (0, 9, 12), (1, 4, 18), (2, 7, 16), (3, 9, 12), (4, 2, 19), (5, 7, 16), (6, 2, 12), (9, 7, 18)] assert A.col_list() == [(0, 0, 18), (4, 2, 19), (6, 2, 12), (1, 4, 18), (2, 7, 16), (5, 7, 16), (9, 7, 18), (0, 9, 12), (3, 9, 12)] assert SparseMatrix.eye(2).nnz() == 2 M = SparseMatrix.eye(3)*2 M[1, 0] = -1 M.col_op(1, lambda v, i: v + 2*M[i, 0]) assert M == Matrix([[ 2, 4, 0], [-1, 0, 0], [ 0, 0, 2]]) M = SparseMatrix.zeros(3) M.fill(1) assert M == ones(3) assert SparseMatrix(ones(0, 3)).tolist() == []