예제 #1
0
def test_heurisch_hacking():
    assert (heurisch(sqrt(1 + 7 * x**2), x,
                     hints=[]) == x * sqrt(1 + 7 * x**2) / 2 +
            sqrt(7) * asinh(sqrt(7) * x) / 14)
    assert (heurisch(sqrt(1 - 7 * x**2), x,
                     hints=[]) == x * sqrt(1 - 7 * x**2) / 2 +
            sqrt(7) * asin(sqrt(7) * x) / 14)

    assert heurisch(sqrt(y * x**2 - 1), x, hints=[]) is None

    assert (heurisch(1 / sqrt(1 + 7 * x**2), x,
                     hints=[]) == sqrt(7) * asinh(sqrt(7) * x) / 7)
    assert (heurisch(1 / sqrt(1 - 7 * x**2), x,
                     hints=[]) == sqrt(7) * asin(sqrt(7) * x) / 7)

    assert heurisch(exp(-7 * x**2), x,
                    hints=[]) == sqrt(7 * pi) * erf(sqrt(7) * x) / 14
    assert heurisch(exp(2 * x**2), x,
                    hints=[]) == sqrt(2) * sqrt(pi) * erfi(sqrt(2) * x) / 4

    assert (heurisch(exp(2 * x**2 - 3 * x), x,
                     hints=[]) == sqrt(2) * sqrt(pi) *
            erfi(sqrt(2) * x - 3 * sqrt(2) / 4) / (4 * E**Rational(9, 8)))

    assert heurisch(1 / sqrt(9 - 4 * x**2), x, hints=[]) == asin(2 * x / 3) / 2
    assert heurisch(1 / sqrt(9 + 4 * x**2), x,
                    hints=[]) == asinh(2 * x / 3) / 2

    assert heurisch(li(x), x, hints=[]) == x * li(x) - Ei(2 * log(x))
    assert heurisch(li(log(x)), x, hints=[]) is None

    assert (heurisch(sqrt(1 + x), x,
                     hints=[x, sqrt(1 + x)]) == 2 * x * sqrt(x + 1) / 3 +
            2 * sqrt(x + 1) / 3)
예제 #2
0
def test_heurisch_trigonometric():
    assert heurisch(sin(x), x) == -cos(x)
    assert heurisch(pi * sin(x) + 1, x) == x - pi * cos(x)

    assert heurisch(cos(x), x) == sin(x)
    assert heurisch(tan(x), x) in [
        log(1 + tan(x)**2) / 2,
        log(tan(x) + I) + I * x,
        log(tan(x) - I) - I * x,
    ]

    assert heurisch(sin(x) * sin(y), x) == -cos(x) * sin(y)
    assert heurisch(sin(x) * sin(y), y) == -cos(y) * sin(x)

    assert heurisch(sin(x) * cos(x), x) in [sin(x)**2 / 2, -cos(x)**2 / 2]
    assert heurisch(cos(x) / sin(x), x) == log(sin(x))

    assert heurisch(x * sin(7 * x), x) == sin(7 * x) / 49 - x * cos(7 * x) / 7
    assert heurisch(
        1 / pi / 4 * x**2 * cos(x),
        x) == 1 / pi / 4 * (x**2 * sin(x) - 2 * sin(x) + 2 * x * cos(x))

    assert heurisch(acos(x/4) * asin(x/4), x) == 2*x - (sqrt(16 - x**2))*asin(x/4) \
        + (sqrt(16 - x**2))*acos(x/4) + x*asin(x/4)*acos(x/4)

    assert heurisch(1 / sin(1 / x) / x**2, x) == -log(tan(1 / x / 2))
예제 #3
0
def test_heurisch_trigonometric():
    assert heurisch(sin(x), x) == -cos(x)
    assert heurisch(pi * sin(x) + 1, x) == x - pi * cos(x)

    assert heurisch(cos(x), x) == sin(x)
    assert heurisch(tan(x), x) in [
        log(1 + tan(x)**2) / 2,
        log(tan(x) + I) + I * x,
        log(tan(x) - I) - I * x,
    ]

    assert heurisch(sin(x) * sin(y), x) == -cos(x) * sin(y)
    assert heurisch(sin(x) * sin(y), y) == -cos(y) * sin(x)

    # gives sin(x) in answer when run via setup.py and cos(x) when run via py.test
    assert heurisch(sin(x) * cos(x), x) in [sin(x)**2 / 2, -cos(x)**2 / 2]
    assert heurisch(cos(x) / sin(x), x) == log(sin(x))

    assert heurisch(x * sin(7 * x), x) == sin(7 * x) / 49 - x * cos(7 * x) / 7
    assert heurisch(
        1 / pi / 4 * x**2 * cos(x),
        x) == 1 / pi / 4 * (x**2 * sin(x) - 2 * sin(x) + 2 * x * cos(x))

    assert heurisch(acos(x/4) * asin(x/4), x) == 2*x - (sqrt(16 - x**2))*asin(x/4) \
        + (sqrt(16 - x**2))*acos(x/4) + x*asin(x/4)*acos(x/4)
예제 #4
0
def test_basic6():
    # pull sympy/sympy#22491
    assert limit(1/asin(x), x, 0) == oo
    assert limit(1/asin(x), x, 0, dir=1) == -oo
    assert limit(1/sinh(x), x, 0) == oo
    assert limit(1/sinh(x), x, 0, dir=1) == -oo
    assert limit(log(1/x) + 1/sin(x), x, 0) == oo
    assert limit(log(1/x) + 1/x, x, 0) == oo
예제 #5
0
def test_messy():
    assert laplace_transform(Si(x), x, s) == ((-atan(s) + pi/2)/s, 0, True)

    assert laplace_transform(Shi(x), x, s) == (acoth(s)/s, 1, True)

    # where should the logs be simplified?
    assert laplace_transform(Chi(x), x, s) == \
        ((log(s**(-2)) - log((s**2 - 1)/s**2))/(2*s), 1, True)

    # TODO maybe simplify the inequalities?
    assert laplace_transform(besselj(a, x), x, s)[1:] == \
        (0, And(Integer(0) < re(a/2) + Rational(1, 2), Integer(0) < re(a/2) + 1))

    # NOTE s < 0 can be done, but argument reduction is not good enough yet
    assert fourier_transform(besselj(1, x)/x, x, s, noconds=False) == \
        (Piecewise((0, 4*abs(pi**2*s**2) > 1),
                   (2*sqrt(-4*pi**2*s**2 + 1), True)), s > 0)
    # TODO FT(besselj(0,x)) - conditions are messy (but for acceptable reasons)
    #                       - folding could be better

    assert integrate(E1(x)*besselj(0, x), (x, 0, oo), meijerg=True) == \
        log(1 + sqrt(2))
    assert integrate(E1(x)*besselj(1, x), (x, 0, oo), meijerg=True) == \
        log(Rational(1, 2) + sqrt(2)/2)

    assert integrate(1/x/sqrt(1 - x**2), x, meijerg=True) == \
        Piecewise((-acosh(1/x), 1 < abs(x**(-2))), (I*asin(1/x), True))
예제 #6
0
def test_intrinsic_math1_codegen():
    # not included: log10
    name_expr = [
        ("test_fabs", abs(x)),
        ("test_acos", acos(x)),
        ("test_asin", asin(x)),
        ("test_atan", atan(x)),
        ("test_cos", cos(x)),
        ("test_cosh", cosh(x)),
        ("test_log", log(x)),
        ("test_ln", ln(x)),
        ("test_sin", sin(x)),
        ("test_sinh", sinh(x)),
        ("test_sqrt", sqrt(x)),
        ("test_tan", tan(x)),
        ("test_tanh", tanh(x)),
    ]
    numerical_tests = []
    for name, expr in name_expr:
        for xval in 0.2, 0.5, 0.8:
            expected = N(expr.subs({x: xval}), strict=False)
            numerical_tests.append((name, (xval,), expected, 1e-14))
    for lang, commands in valid_lang_commands:
        if lang == "C":
            name_expr_C = [("test_floor", floor(x)), ("test_ceil", ceiling(x))]
        else:
            name_expr_C = []
        run_test("intrinsic_math1", name_expr + name_expr_C,
                 numerical_tests, lang, commands)
예제 #7
0
def test_messy():
    assert laplace_transform(Si(x), x, s) == ((-atan(s) + pi / 2) / s, 0, True)

    assert laplace_transform(Shi(x), x, s) == (acoth(s) / s, 1, True)

    # where should the logs be simplified?
    assert laplace_transform(Chi(x), x, s) == \
        ((log(s**(-2)) - log((s**2 - 1)/s**2))/(2*s), 1, True)

    # TODO maybe simplify the inequalities?
    assert laplace_transform(besselj(a, x), x, s)[1:] == \
        (0, And(Integer(0) < re(a/2) + Rational(1, 2), Integer(0) < re(a/2) + 1))

    # NOTE s < 0 can be done, but argument reduction is not good enough yet
    assert fourier_transform(besselj(1, x)/x, x, s, noconds=False) == \
        (Piecewise((0, 4*abs(pi**2*s**2) > 1),
                   (2*sqrt(-4*pi**2*s**2 + 1), True)), s > 0)
    # TODO FT(besselj(0,x)) - conditions are messy (but for acceptable reasons)
    #                       - folding could be better

    assert integrate(E1(x)*besselj(0, x), (x, 0, oo), meijerg=True) == \
        log(1 + sqrt(2))
    assert integrate(E1(x)*besselj(1, x), (x, 0, oo), meijerg=True) == \
        log(Rational(1, 2) + sqrt(2)/2)

    assert integrate(1/x/sqrt(1 - x**2), x, meijerg=True) == \
        Piecewise((-acosh(1/x), 1 < abs(x**(-2))), (I*asin(1/x), True))
예제 #8
0
def test_intrinsic_math1_codegen():
    # not included: log10
    name_expr = [
        ("test_fabs", abs(x)),
        ("test_acos", acos(x)),
        ("test_asin", asin(x)),
        ("test_atan", atan(x)),
        ("test_cos", cos(x)),
        ("test_cosh", cosh(x)),
        ("test_log", log(x)),
        ("test_ln", ln(x)),
        ("test_sin", sin(x)),
        ("test_sinh", sinh(x)),
        ("test_sqrt", sqrt(x)),
        ("test_tan", tan(x)),
        ("test_tanh", tanh(x)),
    ]
    numerical_tests = []
    for name, expr in name_expr:
        for xval in 0.2, 0.5, 0.8:
            expected = N(expr.subs(x, xval), strict=False)
            numerical_tests.append((name, (xval, ), expected, 1e-14))
    for lang, commands in valid_lang_commands:
        if lang == "C":
            name_expr_C = [("test_floor", floor(x)), ("test_ceil", ceiling(x))]
        else:
            name_expr_C = []
        run_test("intrinsic_math1", name_expr + name_expr_C, numerical_tests,
                 lang, commands)
예제 #9
0
def test_acot_rewrite():
    assert acot(x).rewrite(log) == I*log((x - I)/(x + I))/2
    assert acot(x).rewrite(asin) == x*(-asin(sqrt(-x**2)/sqrt(-x**2 - 1)) + pi/2)*sqrt(x**(-2))
    assert acot(x).rewrite(acos) == x*sqrt(x**(-2))*acos(sqrt(-x**2)/sqrt(-x**2 - 1))
    assert acot(x).rewrite(atan) == atan(1/x)
    assert acot(x).rewrite(asec) == x*sqrt(x**(-2))*asec(sqrt((x**2 + 1)/x**2))
    assert acot(x).rewrite(acsc) == x*(-acsc(sqrt((x**2 + 1)/x**2)) + pi/2)*sqrt(x**(-2))
예제 #10
0
def test_atan_rewrite():
    assert atan(x).rewrite(log) == I*log((1 - I*x)/(1 + I*x))/2
    assert atan(x).rewrite(asin) == (-asin(1/sqrt(x**2 + 1)) + pi/2)*sqrt(x**2)/x
    assert atan(x).rewrite(acos) == sqrt(x**2)*acos(1/sqrt(x**2 + 1))/x
    assert atan(x).rewrite(acot) == acot(1/x)
    assert atan(x).rewrite(asec) == sqrt(x**2)*asec(sqrt(x**2 + 1))/x
    assert atan(x).rewrite(acsc) == (-acsc(sqrt(x**2 + 1)) + pi/2)*sqrt(x**2)/x
예제 #11
0
def test_intrinsic_math1_codegen():
    # not included: log10
    name_expr = [
        ('test_fabs', abs(x)),
        ('test_acos', acos(x)),
        ('test_asin', asin(x)),
        ('test_atan', atan(x)),
        ('test_cos', cos(x)),
        ('test_cosh', cosh(x)),
        ('test_log', log(x)),
        ('test_ln', ln(x)),
        ('test_sin', sin(x)),
        ('test_sinh', sinh(x)),
        ('test_sqrt', sqrt(x)),
        ('test_tan', tan(x)),
        ('test_tanh', tanh(x)),
    ]
    numerical_tests = []
    for name, expr in name_expr:
        for xval in 0.2, 0.5, 0.8:
            expected = N(expr.subs({x: xval}), strict=False)
            numerical_tests.append((name, (xval, ), expected, 1e-14))
    for lang, commands in valid_lang_commands:
        if lang == 'C':
            name_expr_C = [('test_floor', floor(x)), ('test_ceil', ceiling(x))]
        else:
            name_expr_C = []
        run_test('intrinsic_math1', name_expr + name_expr_C, numerical_tests,
                 lang, commands)
예제 #12
0
def test_sympyissue_4492():
    assert simplify(integrate(x**2 * sqrt(5 - x**2), x)) == Piecewise(
        (I * (2 * x**5 - 15 * x**3 + 25 * x -
              25 * sqrt(x**2 - 5) * acosh(sqrt(5) * x / 5)) /
         (8 * sqrt(x**2 - 5)), 1 < Abs(x**2) / 5),
        ((-2 * x**5 + 15 * x**3 - 25 * x +
          25 * sqrt(-x**2 + 5) * asin(sqrt(5) * x / 5)) /
         (8 * sqrt(-x**2 + 5)), True))
예제 #13
0
def test_heurisch_hacking():
    assert (heurisch(sqrt(1 + 7*x**2), x, hints=[]) ==
            x*sqrt(1 + 7*x**2)/2 + sqrt(7)*asinh(sqrt(7)*x)/14)
    assert (heurisch(sqrt(1 - 7*x**2), x, hints=[]) ==
            x*sqrt(1 - 7*x**2)/2 + sqrt(7)*asin(sqrt(7)*x)/14)

    assert (heurisch(1/sqrt(1 + 7*x**2), x, hints=[]) ==
            sqrt(7)*asinh(sqrt(7)*x)/7)
    assert (heurisch(1/sqrt(1 - 7*x**2), x, hints=[]) ==
            sqrt(7)*asin(sqrt(7)*x)/7)

    assert (heurisch(exp(-7*x**2), x, hints=[]) == sqrt(7*pi)*erf(sqrt(7)*x)/14)

    assert heurisch(1/sqrt(9 - 4*x**2), x, hints=[]) == asin(2*x/3)/2
    assert heurisch(1/sqrt(9 + 4*x**2), x, hints=[]) == asinh(2*x/3)/2

    assert heurisch(li(x), x, hints=[]) == x*li(x) - Ei(2*log(x))
예제 #14
0
def test_acos_series():
    assert acos(x).series(x, 0, 8) == \
        pi/2 - x - x**3/6 - 3*x**5/40 - 5*x**7/112 + O(x**8)
    assert acos(x).series(x, 0, 8) == pi/2 - asin(x).series(x, 0, 8)
    t5 = acos(x).taylor_term(5, x)
    assert t5 == -3*x**5/40
    assert acos(x).taylor_term(7, x, t5, 0) == -5*x**7/112
    assert acos(x).taylor_term(0, x) == pi/2
    assert acos(x).taylor_term(2, x) == 0
예제 #15
0
def test_hyperexpand():
    # Luke, Y. L. (1969), The Special Functions and Their Approximations,
    # Volume 1, section 6.2

    assert hyperexpand(hyper([], [], z)) == exp(z)
    assert hyperexpand(hyper([1, 1], [2], -z)*z) == log(1 + z)
    assert hyperexpand(hyper([], [S.Half], -z**2/4)) == cos(z)
    assert hyperexpand(z*hyper([], [Rational(3, 2)], -z**2/4)) == sin(z)
    assert hyperexpand(hyper([Rational(1, 2), Rational(1, 2)], [Rational(3, 2)], z**2)*z) \
        == asin(z)
예제 #16
0
def test_heurisch_hacking():
    assert heurisch(sqrt(1 + 7*x**2), x, hints=[]) == \
        x*sqrt(1 + 7*x**2)/2 + sqrt(7)*asinh(sqrt(7)*x)/14
    assert heurisch(sqrt(1 - 7*x**2), x, hints=[]) == \
        x*sqrt(1 - 7*x**2)/2 + sqrt(7)*asin(sqrt(7)*x)/14

    assert heurisch(1/sqrt(1 + 7*x**2), x, hints=[]) == \
        sqrt(7)*asinh(sqrt(7)*x)/7
    assert heurisch(1/sqrt(1 - 7*x**2), x, hints=[]) == \
        sqrt(7)*asin(sqrt(7)*x)/7

    assert heurisch(exp(-7*x**2), x, hints=[]) == \
        sqrt(7*pi)*erf(sqrt(7)*x)/14

    assert heurisch(1/sqrt(9 - 4*x**2), x, hints=[]) == \
        asin(2*x/3)/2

    assert heurisch(1/sqrt(9 + 4*x**2), x, hints=[]) == \
        asinh(2*x/3)/2
예제 #17
0
def test_acos_rewrite():
    assert acos(x).rewrite(log) == pi/2 + I*log(I*x + sqrt(1 - x**2))
    assert acos(x).rewrite(atan) == \
        atan(sqrt(1 - x**2)/x) + (pi/2)*(1 - x*sqrt(1/x**2))
    assert acos(0).rewrite(atan) == pi/2
    assert acos(0.5).rewrite(atan) == acos(0.5).rewrite(log)
    assert acos(x).rewrite(asin) == pi/2 - asin(x)
    assert acos(x).rewrite(acot) == -2*acot((sqrt(-x**2 + 1) + 1)/x) + pi/2
    assert acos(x).rewrite(asec) == asec(1/x)
    assert acos(x).rewrite(acsc) == -acsc(1/x) + pi/2
예제 #18
0
def test_hyperexpand():
    # Luke, Y. L. (1969), The Special Functions and Their Approximations,
    # Volume 1, section 6.2

    assert hyperexpand(hyper([], [], z)) == exp(z)
    assert hyperexpand(hyper([1, 1], [2], -z)*z) == log(1 + z)
    assert hyperexpand(hyper([], [Rational(1, 2)], -z**2/4)) == cos(z)
    assert hyperexpand(z*hyper([], [Rational(3, 2)], -z**2/4)) == sin(z)
    assert hyperexpand(hyper([Rational(1, 2), Rational(1, 2)], [Rational(3, 2)], z**2)*z) \
        == asin(z)
예제 #19
0
def test_inverses():
    pytest.raises(AttributeError, lambda: sin(x).inverse())
    pytest.raises(AttributeError, lambda: cos(x).inverse())
    assert tan(x).inverse() == atan
    assert cot(x).inverse() == acot
    pytest.raises(AttributeError, lambda: csc(x).inverse())
    pytest.raises(AttributeError, lambda: sec(x).inverse())
    assert asin(x).inverse() == sin
    assert acos(x).inverse() == cos
    assert atan(x).inverse() == tan
    assert acot(x).inverse() == cot
예제 #20
0
def test_heurisch_hacking():
    assert (heurisch(sqrt(1 + 7 * x**2), x,
                     hints=[]) == x * sqrt(1 + 7 * x**2) / 2 +
            sqrt(7) * asinh(sqrt(7) * x) / 14)
    assert (heurisch(sqrt(1 - 7 * x**2), x,
                     hints=[]) == x * sqrt(1 - 7 * x**2) / 2 +
            sqrt(7) * asin(sqrt(7) * x) / 14)

    assert (heurisch(1 / sqrt(1 + 7 * x**2), x,
                     hints=[]) == sqrt(7) * asinh(sqrt(7) * x) / 7)
    assert (heurisch(1 / sqrt(1 - 7 * x**2), x,
                     hints=[]) == sqrt(7) * asin(sqrt(7) * x) / 7)

    assert (heurisch(exp(-7 * x**2), x,
                     hints=[]) == sqrt(7 * pi) * erf(sqrt(7) * x) / 14)

    assert heurisch(1 / sqrt(9 - 4 * x**2), x, hints=[]) == asin(2 * x / 3) / 2
    assert heurisch(1 / sqrt(9 + 4 * x**2), x,
                    hints=[]) == asinh(2 * x / 3) / 2

    assert heurisch(li(x), x, hints=[]) == x * li(x) - Ei(2 * log(x))
예제 #21
0
def test_asin_rewrite():
    assert asin(x).rewrite(log) == -I*log(I*x + sqrt(1 - x**2))
    assert asin(x).rewrite(atan) == 2*atan(x/(1 + sqrt(1 - x**2)))
    assert asin(x).rewrite(acos) == pi/2 - acos(x)
    assert asin(x).rewrite(acot) == 2*acot((sqrt(-x**2 + 1) + 1)/x)
    assert asin(x).rewrite(asec) == -asec(1/x) + pi/2
    assert asin(x).rewrite(acsc) == acsc(1/x)
예제 #22
0
def test_special_is_rational():
    i = Symbol('i', integer=True)
    i2 = Symbol('i2', integer=True)
    ni = Symbol('ni', integer=True, nonzero=True)
    r = Symbol('r', rational=True)
    rn = Symbol('r', rational=True, nonzero=True)
    nr = Symbol('nr', irrational=True)
    x = Symbol('x')
    assert sqrt(3).is_rational is False
    assert (3 + sqrt(3)).is_rational is False
    assert (3*sqrt(3)).is_rational is False
    z = Symbol('z', zero=True)
    assert exp(z).is_rational
    assert exp(0, evaluate=False).is_rational
    assert exp(3).is_rational is False
    assert exp(ni).is_rational is False
    assert exp(rn).is_rational is False
    assert exp(x).is_rational is None
    assert exp(log(3), evaluate=False).is_rational is True
    assert log(exp(3), evaluate=False).is_rational is True
    assert log(3).is_rational is False
    assert log(ni + 1).is_rational is False
    assert log(rn + 1).is_rational is False
    assert log(x).is_rational is None
    assert (sqrt(3) + sqrt(5)).is_rational is None
    assert (sqrt(3) + pi).is_rational is False
    assert (x**i).is_rational is None
    assert (i**i).is_rational is True
    assert (i**i2).is_rational is None
    assert (r**i).is_rational is None
    assert (r**r).is_rational is None
    assert (r**x).is_rational is None
    assert (nr**i).is_rational is None  # issue sympy/sympy#8598
    assert (nr**Symbol('z', zero=True)).is_rational
    assert sin(1).is_rational is False
    assert sin(ni).is_rational is False
    assert sin(rn).is_rational is False
    assert sin(x).is_rational is None
    assert asin(rn).is_rational is False
    assert sin(asin(3), evaluate=False).is_rational is True
예제 #23
0
def test_special_is_rational():
    i = Symbol('i', integer=True)
    i2 = Symbol('i2', integer=True)
    ni = Symbol('ni', integer=True, nonzero=True)
    r = Symbol('r', rational=True)
    rn = Symbol('r', rational=True, nonzero=True)
    nr = Symbol('nr', irrational=True)
    x = Symbol('x')
    assert sqrt(3).is_rational is False
    assert (3 + sqrt(3)).is_rational is False
    assert (3 * sqrt(3)).is_rational is False
    z = Symbol('z', zero=True)
    assert exp(z).is_rational
    assert exp(0, evaluate=False).is_rational
    assert exp(3).is_rational is False
    assert exp(ni).is_rational is False
    assert exp(rn).is_rational is False
    assert exp(x).is_rational is None
    assert exp(log(3), evaluate=False).is_rational is True
    assert log(exp(3), evaluate=False).is_rational is True
    assert log(3).is_rational is False
    assert log(ni + 1).is_rational is False
    assert log(rn + 1).is_rational is False
    assert log(x).is_rational is None
    assert (sqrt(3) + sqrt(5)).is_rational is None
    assert (sqrt(3) + S.Pi).is_rational is False
    assert (x**i).is_rational is None
    assert (i**i).is_rational is True
    assert (i**i2).is_rational is None
    assert (r**i).is_rational is None
    assert (r**r).is_rational is None
    assert (r**x).is_rational is None
    assert (nr**i).is_rational is None  # issue sympy/sympy#8598
    assert (nr**Symbol('z', zero=True)).is_rational
    assert sin(1).is_rational is False
    assert sin(ni).is_rational is False
    assert sin(rn).is_rational is False
    assert sin(x).is_rational is None
    assert asin(rn).is_rational is False
    assert sin(asin(3), evaluate=False).is_rational is True
예제 #24
0
def test_ansi_math1_codegen():
    # not included: log10
    name_expr = [
        ("test_fabs", Abs(x)),
        ("test_acos", acos(x)),
        ("test_asin", asin(x)),
        ("test_atan", atan(x)),
        ("test_ceil", ceiling(x)),
        ("test_cos", cos(x)),
        ("test_cosh", cosh(x)),
        ("test_floor", floor(x)),
        ("test_log", log(x)),
        ("test_ln", ln(x)),
        ("test_sin", sin(x)),
        ("test_sinh", sinh(x)),
        ("test_sqrt", sqrt(x)),
        ("test_tan", tan(x)),
        ("test_tanh", tanh(x)),
    ]
    result = codegen(name_expr, "C", "file", header=False, empty=False)
    assert result[0][0] == "file.c"
    assert result[0][1] == (
        '#include "file.h"\n#include <math.h>\n'
        'double test_fabs(double x) {\n   double test_fabs_result;\n   test_fabs_result = fabs(x);\n   return test_fabs_result;\n}\n'
        'double test_acos(double x) {\n   double test_acos_result;\n   test_acos_result = acos(x);\n   return test_acos_result;\n}\n'
        'double test_asin(double x) {\n   double test_asin_result;\n   test_asin_result = asin(x);\n   return test_asin_result;\n}\n'
        'double test_atan(double x) {\n   double test_atan_result;\n   test_atan_result = atan(x);\n   return test_atan_result;\n}\n'
        'double test_ceil(double x) {\n   double test_ceil_result;\n   test_ceil_result = ceil(x);\n   return test_ceil_result;\n}\n'
        'double test_cos(double x) {\n   double test_cos_result;\n   test_cos_result = cos(x);\n   return test_cos_result;\n}\n'
        'double test_cosh(double x) {\n   double test_cosh_result;\n   test_cosh_result = cosh(x);\n   return test_cosh_result;\n}\n'
        'double test_floor(double x) {\n   double test_floor_result;\n   test_floor_result = floor(x);\n   return test_floor_result;\n}\n'
        'double test_log(double x) {\n   double test_log_result;\n   test_log_result = log(x);\n   return test_log_result;\n}\n'
        'double test_ln(double x) {\n   double test_ln_result;\n   test_ln_result = log(x);\n   return test_ln_result;\n}\n'
        'double test_sin(double x) {\n   double test_sin_result;\n   test_sin_result = sin(x);\n   return test_sin_result;\n}\n'
        'double test_sinh(double x) {\n   double test_sinh_result;\n   test_sinh_result = sinh(x);\n   return test_sinh_result;\n}\n'
        'double test_sqrt(double x) {\n   double test_sqrt_result;\n   test_sqrt_result = sqrt(x);\n   return test_sqrt_result;\n}\n'
        'double test_tan(double x) {\n   double test_tan_result;\n   test_tan_result = tan(x);\n   return test_tan_result;\n}\n'
        'double test_tanh(double x) {\n   double test_tanh_result;\n   test_tanh_result = tanh(x);\n   return test_tanh_result;\n}\n'
    )
    assert result[1][0] == "file.h"
    assert result[1][1] == (
        '#ifndef PROJECT__FILE__H\n#define PROJECT__FILE__H\n'
        'double test_fabs(double x);\ndouble test_acos(double x);\n'
        'double test_asin(double x);\ndouble test_atan(double x);\n'
        'double test_ceil(double x);\ndouble test_cos(double x);\n'
        'double test_cosh(double x);\ndouble test_floor(double x);\n'
        'double test_log(double x);\ndouble test_ln(double x);\n'
        'double test_sin(double x);\ndouble test_sinh(double x);\n'
        'double test_sqrt(double x);\ndouble test_tan(double x);\n'
        'double test_tanh(double x);\n#endif\n'
    )
예제 #25
0
def test_hyperexpand_bases():
    assert hyperexpand(hyper([2], [a], z)) == \
        a + z**(-a + 1)*(-a**2 + 3*a + z*(a - 1) - 2)*exp(z) * \
        lowergamma(a - 1, z) - 1
    # TODO [a+1, a+Rational(-1, 2)], [2*a]
    assert hyperexpand(hyper([1, 2], [3], z)) == -2/z - 2*log(-z + 1)/z**2
    assert hyperexpand(hyper([Rational(1, 2), 2], [Rational(3, 2)], z)) == \
        -1/(2*z - 2) + atanh(sqrt(z))/sqrt(z)/2
    assert hyperexpand(hyper([Rational(1, 2), Rational(1, 2)], [Rational(5, 2)], z)) == \
        (-3*z + 3)/4/(z*sqrt(-z + 1)) \
        + (6*z - 3)*asin(sqrt(z))/(4*z**Rational(3, 2))
    assert hyperexpand(hyper([1, 2], [Rational(3, 2)], z)) == -1/(2*z - 2) \
        - asin(sqrt(z))/(sqrt(z)*(2*z - 2)*sqrt(-z + 1))
    assert hyperexpand(hyper([Rational(-1, 2) - 1, 1, 2], [Rational(1, 2), 3], z)) == \
        sqrt(z)*(6*z/7 - Rational(6, 5))*atanh(sqrt(z)) \
        + (-30*z**2 + 32*z - 6)/35/z - 6*log(-z + 1)/(35*z**2)
    assert hyperexpand(hyper([1 + Rational(1, 2), 1, 1], [2, 2], z)) == \
        -4*log(sqrt(-z + 1)/2 + Rational(1, 2))/z
    # TODO hyperexpand(hyper([a], [2*a + 1], z))
    # TODO [Rational(1, 2), a], [Rational(3, 2), a+1]
    assert hyperexpand(hyper([2], [b, 1], z)) == \
        z**(-b/2 + Rational(1, 2))*besseli(b - 1, 2*sqrt(z))*gamma(b) \
        + z**(-b/2 + 1)*besseli(b, 2*sqrt(z))*gamma(b)
예제 #26
0
def test_hyperexpand_bases():
    assert hyperexpand(hyper([2], [a], z)) == \
        a + z**(-a + 1)*(-a**2 + 3*a + z*(a - 1) - 2)*exp(z) * \
        lowergamma(a - 1, z) - 1
    # TODO [a+1, a-S.Half], [2*a]
    assert hyperexpand(hyper([1, 2], [3], z)) == -2/z - 2*log(-z + 1)/z**2
    assert hyperexpand(hyper([S.Half, 2], [Rational(3, 2)], z)) == \
        -1/(2*z - 2) + atanh(sqrt(z))/sqrt(z)/2
    assert hyperexpand(hyper([Rational(1, 2), Rational(1, 2)], [Rational(5, 2)], z)) == \
        (-3*z + 3)/4/(z*sqrt(-z + 1)) \
        + (6*z - 3)*asin(sqrt(z))/(4*z**Rational(3, 2))
    assert hyperexpand(hyper([1, 2], [Rational(3, 2)], z)) == -1/(2*z - 2) \
        - asin(sqrt(z))/(sqrt(z)*(2*z - 2)*sqrt(-z + 1))
    assert hyperexpand(hyper([-S.Half - 1, 1, 2], [S.Half, 3], z)) == \
        sqrt(z)*(6*z/7 - Rational(6, 5))*atanh(sqrt(z)) \
        + (-30*z**2 + 32*z - 6)/35/z - 6*log(-z + 1)/(35*z**2)
    assert hyperexpand(hyper([1 + S.Half, 1, 1], [2, 2], z)) == \
        -4*log(sqrt(-z + 1)/2 + Rational(1, 2))/z
    # TODO hyperexpand(hyper([a], [2*a + 1], z))
    # TODO [S.Half, a], [Rational(3, 2), a+1]
    assert hyperexpand(hyper([2], [b, 1], z)) == \
        z**(-b/2 + Rational(1, 2))*besseli(b - 1, 2*sqrt(z))*gamma(b) \
        + z**(-b/2 + 1)*besseli(b, 2*sqrt(z))*gamma(b)
예제 #27
0
def test_leading_terms():
    for func in [sin, cos, tan, cot, asin, acos, atan, acot]:
        for arg in (1/x, Rational(1, 2)):
            eq = func(arg)
            assert eq.as_leading_term(x) == eq

    # issue sympy/sympy#5272
    assert sin(x).as_leading_term(x) == x
    assert cos(x).as_leading_term(x) == 1
    assert tan(x).as_leading_term(x) == x
    assert cot(x).as_leading_term(x) == 1/x
    assert asin(x).as_leading_term(x) == x
    assert acos(x).as_leading_term(x) == x
    assert atan(x).as_leading_term(x) == x
    assert acot(x).as_leading_term(x) == x
예제 #28
0
def test_heurisch_trigonometric():
    assert heurisch(sin(x), x) == -cos(x)
    assert heurisch(pi*sin(x) + 1, x) == x - pi*cos(x)

    assert heurisch(cos(x), x) == sin(x)
    assert heurisch(tan(x), x) in [
        log(1 + tan(x)**2)/2,
        log(tan(x) + I) + I*x,
        log(tan(x) - I) - I*x,
    ]

    assert heurisch(sin(x)*sin(y), x) == -cos(x)*sin(y)
    assert heurisch(sin(x)*sin(y), y) == -cos(y)*sin(x)

    # gives sin(x) in answer when run via setup.py and cos(x) when run via py.test
    assert heurisch(sin(x)*cos(x), x) in [sin(x)**2 / 2, -cos(x)**2 / 2]
    assert heurisch(cos(x)/sin(x), x) == log(sin(x))

    assert heurisch(x*sin(7*x), x) == sin(7*x) / 49 - x*cos(7*x) / 7
    assert heurisch(1/pi/4 * x**2*cos(x), x) == 1/pi/4*(x**2*sin(x) -
                                                        2*sin(x) + 2*x*cos(x))

    assert heurisch(acos(x/4) * asin(x/4), x) == 2*x - (sqrt(16 - x**2))*asin(x/4) \
        + (sqrt(16 - x**2))*acos(x/4) + x*asin(x/4)*acos(x/4)
예제 #29
0
def test_hyperexpand():
    # Luke, Y. L. (1969), The Special Functions and Their Approximations,
    # Volume 1, section 6.2

    assert hyperexpand(hyper([], [], z)) == exp(z)
    assert hyperexpand(hyper([1, 1], [2], -z)*z) == log(1 + z)
    assert hyperexpand(hyper([], [Rational(1, 2)], -z**2/4)) == cos(z)
    assert hyperexpand(z*hyper([], [Rational(3, 2)], -z**2/4)) == sin(z)
    assert hyperexpand(hyper([Rational(1, 2), Rational(1, 2)], [Rational(3, 2)], z**2)*z) \
        == asin(z)

    # Test place option
    f = meijerg(((0, 1), ()), ((Rational(1, 2),), (0,)), z**2)
    assert hyperexpand(f) == sqrt(pi)/sqrt(1 + z**(-2))
    assert hyperexpand(f, place=0) == sqrt(pi)*z/sqrt(z**2 + 1)
    assert hyperexpand(f, place=zoo) == sqrt(pi)/sqrt(1 + z**(-2))
예제 #30
0
def test_acsc():
    assert acsc(nan) == nan
    assert acsc(1) == pi/2
    assert acsc(-1) == -pi/2
    assert acsc(oo) == 0
    assert acsc(-oo) == 0
    assert acsc(zoo) == 0

    assert acsc(x).diff(x) == -1/(x**2*sqrt(1 - 1/x**2))
    assert acsc(x).as_leading_term(x) == log(x)

    assert acsc(x).rewrite(log) == -I*log(sqrt(1 - 1/x**2) + I/x)
    assert acsc(x).rewrite(asin) == asin(1/x)
    assert acsc(x).rewrite(acos) == -acos(1/x) + pi/2
    assert acsc(x).rewrite(atan) == (-atan(sqrt(x**2 - 1)) + pi/2)*sqrt(x**2)/x
    assert acsc(x).rewrite(acot) == (-acot(1/sqrt(x**2 - 1)) + pi/2)*sqrt(x**2)/x
    assert acsc(x).rewrite(asec) == -asec(x) + pi/2

    pytest.raises(ArgumentIndexError, lambda: acsc(x).fdiff(2))

    assert acsc(x).as_leading_term(x) == log(x)
    assert acsc(1/x).as_leading_term(x) == acsc(1/x)
예제 #31
0
def test_mathml_trig():
    mml = mp._print(sin(x))
    assert mml.childNodes[0].nodeName == 'sin'

    mml = mp._print(cos(x))
    assert mml.childNodes[0].nodeName == 'cos'

    mml = mp._print(tan(x))
    assert mml.childNodes[0].nodeName == 'tan'

    mml = mp._print(asin(x))
    assert mml.childNodes[0].nodeName == 'arcsin'

    mml = mp._print(acos(x))
    assert mml.childNodes[0].nodeName == 'arccos'

    mml = mp._print(atan(x))
    assert mml.childNodes[0].nodeName == 'arctan'

    mml = mp._print(sinh(x))
    assert mml.childNodes[0].nodeName == 'sinh'

    mml = mp._print(cosh(x))
    assert mml.childNodes[0].nodeName == 'cosh'

    mml = mp._print(tanh(x))
    assert mml.childNodes[0].nodeName == 'tanh'

    mml = mp._print(asinh(x))
    assert mml.childNodes[0].nodeName == 'arcsinh'

    mml = mp._print(atanh(x))
    assert mml.childNodes[0].nodeName == 'arctanh'

    mml = mp._print(acosh(x))
    assert mml.childNodes[0].nodeName == 'arccosh'
예제 #32
0
def test_asec():
    z = Symbol('z', zero=True)
    assert asec(z) == zoo
    assert asec(nan) == nan
    assert asec(1) == 0
    assert asec(-1) == pi
    assert asec(oo) == pi/2
    assert asec(-oo) == pi/2
    assert asec(zoo) == pi/2

    assert asec(x).diff(x) == 1/(x**2*sqrt(1 - 1/x**2))
    assert asec(x).as_leading_term(x) == log(x)

    assert asec(x).rewrite(log) == I*log(sqrt(1 - 1/x**2) + I/x) + pi/2
    assert asec(x).rewrite(asin) == -asin(1/x) + pi/2
    assert asec(x).rewrite(acos) == acos(1/x)
    assert asec(x).rewrite(atan) == (2*atan(x + sqrt(x**2 - 1)) - pi/2)*sqrt(x**2)/x
    assert asec(x).rewrite(acot) == (2*acot(x - sqrt(x**2 - 1)) - pi/2)*sqrt(x**2)/x
    assert asec(x).rewrite(acsc) == -acsc(x) + pi/2

    pytest.raises(ArgumentIndexError, lambda: asec(x).fdiff(2))

    assert asec(x).as_leading_term(x) == log(x)
    assert asec(1/x).as_leading_term(x) == asec(1/x)
예제 #33
0
def test_mathml_trig():
    mml = mp._print(sin(x))
    assert mml.childNodes[0].nodeName == 'sin'

    mml = mp._print(cos(x))
    assert mml.childNodes[0].nodeName == 'cos'

    mml = mp._print(tan(x))
    assert mml.childNodes[0].nodeName == 'tan'

    mml = mp._print(asin(x))
    assert mml.childNodes[0].nodeName == 'arcsin'

    mml = mp._print(acos(x))
    assert mml.childNodes[0].nodeName == 'arccos'

    mml = mp._print(atan(x))
    assert mml.childNodes[0].nodeName == 'arctan'

    mml = mp._print(sinh(x))
    assert mml.childNodes[0].nodeName == 'sinh'

    mml = mp._print(cosh(x))
    assert mml.childNodes[0].nodeName == 'cosh'

    mml = mp._print(tanh(x))
    assert mml.childNodes[0].nodeName == 'tanh'

    mml = mp._print(asinh(x))
    assert mml.childNodes[0].nodeName == 'arcsinh'

    mml = mp._print(atanh(x))
    assert mml.childNodes[0].nodeName == 'arctanh'

    mml = mp._print(acosh(x))
    assert mml.childNodes[0].nodeName == 'arccosh'
예제 #34
0
def test_sympyissue_3504():
    e = asin(a * x) / x
    assert e.series(x, 4, n=2).removeO() == \
        (x - 4)*(a/(4*sqrt(-16*a**2 + 1)) - asin(4*a)/16) + asin(4*a)/4
예제 #35
0
def test_sympyissue_4492():
    assert simplify(integrate(x**2 * sqrt(5 - x**2), x)) == Piecewise(
        (I*(2*x**5 - 15*x**3 + 25*x - 25*sqrt(x**2 - 5)*acosh(sqrt(5)*x/5)) /
            (8*sqrt(x**2 - 5)), 1 < Abs(x**2)/5),
        ((-2*x**5 + 15*x**3 - 25*x + 25*sqrt(-x**2 + 5)*asin(sqrt(5)*x/5)) /
            (8*sqrt(-x**2 + 5)), True))
예제 #36
0
def test_intrinsic_math_codegen():
    # not included: log10
    name_expr = [
        ("test_abs", Abs(x)),
        ("test_acos", acos(x)),
        ("test_asin", asin(x)),
        ("test_atan", atan(x)),
        ("test_cos", cos(x)),
        ("test_cosh", cosh(x)),
        ("test_log", log(x)),
        ("test_ln", ln(x)),
        ("test_sin", sin(x)),
        ("test_sinh", sinh(x)),
        ("test_sqrt", sqrt(x)),
        ("test_tan", tan(x)),
        ("test_tanh", tanh(x)),
    ]
    result = codegen(name_expr, "F95", "file", header=False, empty=False)
    assert result[0][0] == "file.f90"
    expected = (
        'REAL*8 function test_abs(x)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'test_abs = Abs(x)\n'
        'end function\n'
        'REAL*8 function test_acos(x)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'test_acos = acos(x)\n'
        'end function\n'
        'REAL*8 function test_asin(x)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'test_asin = asin(x)\n'
        'end function\n'
        'REAL*8 function test_atan(x)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'test_atan = atan(x)\n'
        'end function\n'
        'REAL*8 function test_cos(x)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'test_cos = cos(x)\n'
        'end function\n'
        'REAL*8 function test_cosh(x)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'test_cosh = cosh(x)\n'
        'end function\n'
        'REAL*8 function test_log(x)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'test_log = log(x)\n'
        'end function\n'
        'REAL*8 function test_ln(x)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'test_ln = log(x)\n'
        'end function\n'
        'REAL*8 function test_sin(x)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'test_sin = sin(x)\n'
        'end function\n'
        'REAL*8 function test_sinh(x)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'test_sinh = sinh(x)\n'
        'end function\n'
        'REAL*8 function test_sqrt(x)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'test_sqrt = sqrt(x)\n'
        'end function\n'
        'REAL*8 function test_tan(x)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'test_tan = tan(x)\n'
        'end function\n'
        'REAL*8 function test_tanh(x)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'test_tanh = tanh(x)\n'
        'end function\n'
    )
    assert result[0][1] == expected

    assert result[1][0] == "file.h"
    expected = (
        'interface\n'
        'REAL*8 function test_abs(x)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'end function\n'
        'end interface\n'
        'interface\n'
        'REAL*8 function test_acos(x)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'end function\n'
        'end interface\n'
        'interface\n'
        'REAL*8 function test_asin(x)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'end function\n'
        'end interface\n'
        'interface\n'
        'REAL*8 function test_atan(x)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'end function\n'
        'end interface\n'
        'interface\n'
        'REAL*8 function test_cos(x)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'end function\n'
        'end interface\n'
        'interface\n'
        'REAL*8 function test_cosh(x)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'end function\n'
        'end interface\n'
        'interface\n'
        'REAL*8 function test_log(x)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'end function\n'
        'end interface\n'
        'interface\n'
        'REAL*8 function test_ln(x)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'end function\n'
        'end interface\n'
        'interface\n'
        'REAL*8 function test_sin(x)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'end function\n'
        'end interface\n'
        'interface\n'
        'REAL*8 function test_sinh(x)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'end function\n'
        'end interface\n'
        'interface\n'
        'REAL*8 function test_sqrt(x)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'end function\n'
        'end interface\n'
        'interface\n'
        'REAL*8 function test_tan(x)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'end function\n'
        'end interface\n'
        'interface\n'
        'REAL*8 function test_tanh(x)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'end function\n'
        'end interface\n'
    )
    assert result[1][1] == expected
예제 #37
0
def test_sympyissue_12221():
    e = sqrt(1 - x)/x
    r = 2*I*(-sqrt(2) - asin(sqrt(3)/3) + asin(sqrt(5)/5) + 2)
    assert integrate(e, (x, 3, 5)).simplify() == r
예제 #38
0
def test_sympyissue_4551():
    assert (integrate(1/(x*sqrt(1 - x**2)), x) ==
            Piecewise((-acosh(1/x), abs(x**-2) > 1), (I*asin(1/x), True)))
예제 #39
0
def test_sympyissue_3504():
    e = asin(a*x)/x
    assert e.series(x, 4, n=2).removeO() == \
        (x - 4)*(a/(4*sqrt(-16*a**2 + 1)) - asin(4*a)/16) + asin(4*a)/4
예제 #40
0
def test_f3():
    # issue sympy/sympy#3504
    assert limit(asin(a * x) / x, x, 0) == a
예제 #41
0
def test_sympyissue_4551():
    assert (integrate(1/(x*sqrt(1 - x**2)), x) ==
            Piecewise((-acosh(1/x), Abs(x**(-2)) > 1), (I*asin(1/x), True)))
예제 #42
0
def test_plane():
    p1 = Point3D(0, 0, 0)
    p2 = Point3D(1, 1, 1)
    p3 = Point3D(1, 2, 3)
    p4 = Point3D(x, x, x)
    p5 = Point3D(y, y, y)

    pl3 = Plane(p1, p2, p3)
    pl4 = Plane(p1, normal_vector=(1, 1, 1))
    pl4b = Plane(p1, p2)
    pl5 = Plane(p3, normal_vector=(1, 2, 3))
    pl6 = Plane(Point3D(2, 3, 7), normal_vector=(2, 2, 2))
    pl7 = Plane(Point3D(1, -5, -6), normal_vector=(1, -2, 1))

    l1 = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
    l2 = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
    l3 = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))

    assert Plane(p1, p2, p3) != Plane(p1, p3, p2)
    assert Plane(p1, p2, p3).is_coplanar(Plane(p1, p3, p2))
    assert pl3 == Plane(Point3D(0, 0, 0), normal_vector=(1, -2, 1))
    assert pl3 != pl4
    assert pl4 == pl4b
    assert pl5 == Plane(Point3D(1, 2, 3), normal_vector=(1, 2, 3))

    assert pl5.equation(x, y, z) == x + 2 * y + 3 * z - 14
    assert pl3.equation(x, y, z) == x - 2 * y + z

    assert pl3.p1 == p1
    assert pl4.p1 == p1
    assert pl5.p1 == p3

    assert pl4.normal_vector == (1, 1, 1)
    assert pl5.normal_vector == (1, 2, 3)

    assert p1 in pl3
    assert p1 in pl4
    assert p3 in pl5

    assert pl3.projection(Point(0, 0)) == p1
    p = pl3.projection(Point3D(1, 1, 0))
    assert p == Point3D(7 / 6, 2 / 3, 1 / 6)
    assert p in pl3

    l = pl3.projection_line(Line(Point(0, 0), Point(1, 1)))
    assert l == Line3D(Point3D(0, 0, 0), Point3D(7 / 6, 2 / 3, 1 / 6))
    assert l in pl3
    # get a segment that does not intersect the plane which is also
    # parallel to pl3's normal veector
    t = Dummy()
    r = pl3.random_point()
    a = pl3.perpendicular_line(r).arbitrary_point(t)
    s = Segment3D(a.subs(t, 1), a.subs(t, 2))
    assert s.p1 not in pl3 and s.p2 not in pl3
    assert pl3.projection_line(s).equals(r)
    assert pl3.projection_line(Segment(Point(1, 0), Point(1, 1))) == \
               Segment3D(Point3D(5/6, 1/3, -1/6), Point3D(7/6, 2/3, 1/6))
    assert pl6.projection_line(Ray(Point(1, 0), Point(1, 1))) == \
               Ray3D(Point3D(14/3, 11/3, 11/3), Point3D(13/3, 13/3, 10/3))
    assert pl3.perpendicular_line(r.args) == pl3.perpendicular_line(r)

    assert pl3.is_parallel(pl6) is False
    assert pl4.is_parallel(pl6)
    assert pl6.is_parallel(l1) is False

    assert pl3.is_perpendicular(pl6)
    assert pl4.is_perpendicular(pl7)
    assert pl6.is_perpendicular(pl7)
    assert pl6.is_perpendicular(l1) is False

    assert pl7.distance(Point3D(1, 3, 5)) == 5 * sqrt(6) / 6
    assert pl6.distance(Point3D(0, 0, 0)) == 4 * sqrt(3)
    assert pl6.distance(pl6.p1) == 0
    assert pl7.distance(pl6) == 0
    assert pl7.distance(l1) == 0
    assert pl6.distance(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == 0
    pl6.distance(Plane(Point3D(5, 5, 5), normal_vector=(8, 8, 8))) == sqrt(3)

    assert pl6.angle_between(pl3) == pi / 2
    assert pl6.angle_between(pl6) == 0
    assert pl6.angle_between(pl4) == 0
    assert pl7.angle_between(Line3D(Point3D(2, 3, 5), Point3D(2, 4, 6))) == \
        -asin(sqrt(3)/6)
    assert pl6.angle_between(Ray3D(Point3D(2, 4, 1), Point3D(6, 5, 3))) == \
        asin(sqrt(7)/3)
    assert pl7.angle_between(Segment3D(Point3D(5, 6, 1), Point3D(1, 2, 4))) == \
        -asin(7*sqrt(246)/246)

    assert are_coplanar(l1, l2, l3) is False
    assert are_coplanar(l1) is False
    assert are_coplanar(Point3D(2, 7, 2), Point3D(0, 0, 2), Point3D(1, 1, 2),
                        Point3D(1, 2, 2))
    assert are_coplanar(Plane(p1, p2, p3), Plane(p1, p3, p2))
    assert Plane.are_concurrent(pl3, pl4, pl5) is False
    assert Plane.are_concurrent(pl6) is False
    pytest.raises(ValueError, lambda: Plane.are_concurrent(Point3D(0, 0, 0)))

    assert pl3.parallel_plane(Point3D(1, 2,
                                      5)) == Plane(Point3D(1, 2, 5),
                                                   normal_vector=(1, -2, 1))

    # perpendicular_plane
    p = Plane((0, 0, 0), (1, 0, 0))
    # default
    assert p.perpendicular_plane() == Plane(Point3D(0, 0, 0), (0, 1, 0))
    # 1 pt
    assert p.perpendicular_plane(Point3D(1, 0, 1)) == \
        Plane(Point3D(1, 0, 1), (0, 1, 0))
    # pts as tuples
    assert p.perpendicular_plane((1, 0, 1), (1, 1, 1)) == \
        Plane(Point3D(1, 0, 1), (0, 0, -1))

    a, b = Point3D(0, 0, 0), Point3D(0, 1, 0)
    Z = (0, 0, 1)
    p = Plane(a, normal_vector=Z)
    # case 4
    assert p.perpendicular_plane(a, b) == Plane(a, (1, 0, 0))
    n = Point3D(*Z)
    # case 1
    assert p.perpendicular_plane(a, n) == Plane(a, (-1, 0, 0))
    # case 2
    assert Plane(a, normal_vector=b.args).perpendicular_plane(a, a + b) == \
        Plane(Point3D(0, 0, 0), (1, 0, 0))
    # case 1&3
    assert Plane(b, normal_vector=Z).perpendicular_plane(b, b + n) == \
        Plane(Point3D(0, 1, 0), (-1, 0, 0))
    # case 2&3
    assert Plane(b, normal_vector=b.args).perpendicular_plane(n, n + b) == \
        Plane(Point3D(0, 0, 1), (1, 0, 0))

    assert pl6.intersection(pl6) == [pl6]
    assert pl4.intersection(pl4.p1) == [pl4.p1]
    assert pl3.intersection(pl6) == [
        Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6))
    ]
    assert pl3.intersection(Line3D(Point3D(1, 2, 4),
                                   Point3D(4, 4,
                                           2))) == [Point3D(2, 8 / 3, 10 / 3)]
    assert pl3.intersection(Plane(Point3D(6, 0, 0),
                                  normal_vector=(2, -5, 3))) == [
                                      Line3D(Point3D(-24, -12, 0),
                                             Point3D(-25, -13, -1))
                                  ]
    assert pl6.intersection(Ray3D(Point3D(2, 3, 1),
                                  Point3D(1, 3, 4))) == [Point3D(-1, 3, 10)]
    assert pl6.intersection(Segment3D(Point3D(2, 3, 1),
                                      Point3D(1, 3,
                                              4))) == [Point3D(-1, 3, 10)]
    assert pl7.intersection(Line(Point(2, 3),
                                 Point(4, 2))) == [Point3D(13 / 2, 3 / 4, 0)]
    r = Ray(Point(2, 3), Point(4, 2))
    assert Plane((1, 2, 0), normal_vector=(0, 0, 1)).intersection(r) == [
        Ray3D(Point(2, 3), Point(4, 2))
    ]

    assert pl3.random_point() in pl3

    # issue 8570
    l2 = Line3D(
        Point3D(Rational(50000004459633, 5000000000000),
                Rational(-891926590718643, 1000000000000000),
                Rational(231800966893633, 100000000000000)),
        Point3D(Rational(50000004459633, 50000000000000),
                Rational(-222981647679771, 250000000000000),
                Rational(231800966893633, 100000000000000)))

    p2 = Plane(
        Point3D(Rational(402775636372767, 100000000000000),
                Rational(-97224357654973, 100000000000000),
                Rational(216793600814789, 100000000000000)),
        (-Float(9.00000087501922), Float(-4.81170658872543e-13), Float(0.0)))

    assert sstr([i.n(2) for i in p2.intersection(l2)]) == \
           '[Point3D(4.0, -0.89, 2.3)]'
예제 #43
0
def test_plane():
    p1 = Point3D(0, 0, 0)
    p2 = Point3D(1, 1, 1)
    p3 = Point3D(1, 2, 3)

    pl3 = Plane(p1, p2, p3)
    pl4 = Plane(p1, normal_vector=(1, 1, 1))
    pl4b = Plane(p1, p2)
    pl5 = Plane(p3, normal_vector=(1, 2, 3))
    pl6 = Plane(Point3D(2, 3, 7), normal_vector=(2, 2, 2))
    pl7 = Plane(Point3D(1, -5, -6), normal_vector=(1, -2, 1))

    l1 = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
    l2 = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
    l3 = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))

    pytest.raises(ValueError, lambda: Plane(p1, normal_vector=(1, 1)))

    assert Plane(p1, p2, p3) != Plane(p1, p3, p2)
    assert Plane(p1, p2, p3).is_coplanar(Plane(p1, p3, p2))
    assert pl3 == Plane(Point3D(0, 0, 0), normal_vector=(1, -2, 1))
    assert pl3 != pl4
    assert pl4 == pl4b
    assert pl5 == Plane(Point3D(1, 2, 3), normal_vector=(1, 2, 3))

    assert pl5.equation(x, y, z) == x + 2*y + 3*z - 14
    assert pl3.equation(x, y, z) == x - 2*y + z

    assert pl3.p1 == p1
    assert pl4.p1 == p1
    assert pl5.p1 == p3

    assert pl4.normal_vector == (1, 1, 1)
    assert pl5.normal_vector == (1, 2, 3)

    assert p1 in pl3
    assert p1 in pl4
    assert p3 in pl5

    assert pl3.projection(Point(0, 0)) == p1
    p = pl3.projection(Point3D(1, 1, 0))
    assert p == Point3D(7/6, 2/3, 1/6)
    assert p in pl3

    l = pl3.projection_line(Line(Point(0, 0), Point(1, 1)))
    assert l == Line3D(Point3D(0, 0, 0), Point3D(7/6, 2/3, 1/6))
    assert l in pl3
    # get a segment that does not intersect the plane which is also
    # parallel to pl3's normal veector
    t = Dummy()
    r = pl3.random_point()
    a = pl3.perpendicular_line(r).arbitrary_point(t)
    s = Segment3D(a.subs({t: 1}), a.subs({t: 2}))
    assert s.p1 not in pl3 and s.p2 not in pl3
    assert pl3.projection_line(s).equals(r)
    assert pl3.projection_line(Segment(Point(1, 0), Point(1, 1))) == \
        Segment3D(Point3D(5/6, 1/3, -1/6), Point3D(7/6, 2/3, 1/6))
    assert pl6.projection_line(Ray(Point(1, 0), Point(1, 1))) == \
        Ray3D(Point3D(14/3, 11/3, 11/3), Point3D(13/3, 13/3, 10/3))
    assert pl3.perpendicular_line(r.args) == pl3.perpendicular_line(r)

    assert pl3.is_parallel(pl6) is False
    assert pl4.is_parallel(pl6)
    assert pl6.is_parallel(l1) is False

    assert pl3.is_perpendicular(pl6)
    assert pl4.is_perpendicular(pl7)
    assert pl6.is_perpendicular(pl7)
    assert pl6.is_perpendicular(l1) is False

    assert pl7.distance(Point3D(1, 3, 5)) == 5*sqrt(6)/6
    assert pl6.distance(Point3D(0, 0, 0)) == 4*sqrt(3)
    assert pl6.distance(pl6.p1) == 0
    assert pl7.distance(pl6) == 0
    assert pl7.distance(l1) == 0
    assert pl6.distance(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == 0
    pl6.distance(Plane(Point3D(5, 5, 5), normal_vector=(8, 8, 8))) == sqrt(3)

    assert pl6.angle_between(pl3) == pi/2
    assert pl6.angle_between(pl6) == 0
    assert pl6.angle_between(pl4) == 0
    assert pl7.angle_between(Line3D(Point3D(2, 3, 5), Point3D(2, 4, 6))) == \
        -asin(sqrt(3)/6)
    assert pl6.angle_between(Ray3D(Point3D(2, 4, 1), Point3D(6, 5, 3))) == \
        asin(sqrt(7)/3)
    assert pl7.angle_between(Segment3D(Point3D(5, 6, 1), Point3D(1, 2, 4))) == \
        -asin(7*sqrt(246)/246)

    assert are_coplanar(l1, l2, l3) is False
    assert are_coplanar(l1) is False
    assert are_coplanar(Point3D(2, 7, 2), Point3D(0, 0, 2),
                        Point3D(1, 1, 2), Point3D(1, 2, 2))
    assert are_coplanar(Plane(p1, p2, p3), Plane(p1, p3, p2))
    assert Plane.are_concurrent(pl3, pl4, pl5) is False
    assert Plane.are_concurrent(pl6) is False
    pytest.raises(ValueError, lambda: Plane.are_concurrent(Point3D(0, 0, 0)))

    assert pl3.parallel_plane(Point3D(1, 2, 5)) == Plane(Point3D(1, 2, 5),
                                                         normal_vector=(1, -2, 1))

    # perpendicular_plane
    p = Plane((0, 0, 0), (1, 0, 0))
    # default
    assert p.perpendicular_plane() == Plane(Point3D(0, 0, 0), (0, 1, 0))
    # 1 pt
    assert p.perpendicular_plane(Point3D(1, 0, 1)) == \
        Plane(Point3D(1, 0, 1), (0, 1, 0))
    # pts as tuples
    assert p.perpendicular_plane((1, 0, 1), (1, 1, 1)) == \
        Plane(Point3D(1, 0, 1), (0, 0, -1))

    pytest.raises(ValueError, lambda: p.perpendicular_plane(Point3D(1, 0, 1),
                                                            Point3D(1, 0, 2),
                                                            Point3D(1, 0, 3)))

    a, b = Point3D(0, 0, 0), Point3D(0, 1, 0)
    Z = (0, 0, 1)
    p = Plane(a, normal_vector=Z)
    # case 4
    assert p.perpendicular_plane(a, b) == Plane(a, (1, 0, 0))
    n = Point3D(*Z)
    # case 1
    assert p.perpendicular_plane(a, n) == Plane(a, (-1, 0, 0))
    # case 2
    assert Plane(a, normal_vector=b.args).perpendicular_plane(a, a + b) == \
        Plane(Point3D(0, 0, 0), (1, 0, 0))
    # case 1&3
    assert Plane(b, normal_vector=Z).perpendicular_plane(b, b + n) == \
        Plane(Point3D(0, 1, 0), (-1, 0, 0))
    # case 2&3
    assert Plane(b, normal_vector=b.args).perpendicular_plane(n, n + b) == \
        Plane(Point3D(0, 0, 1), (1, 0, 0))

    assert pl6.intersection(pl6) == [pl6]
    assert pl4.intersection(pl4.p1) == [pl4.p1]
    assert pl3.intersection(pl6) == [
        Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6))]
    assert pl3.intersection(Line3D(Point3D(1, 2, 4), Point3D(4, 4, 2))) == [
        Point3D(2, 8/3, 10/3)]
    assert (pl3.intersection(Plane(Point3D(6, 0, 0),
                                   normal_vector=(2, -5, 3))) ==
            [Line3D(Point3D(-24, -12, 0), Point3D(-25, -13, -1))])
    assert pl6.intersection(Ray3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == [
        Point3D(-1, 3, 10)]
    assert pl6.intersection(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == [
        Point3D(-1, 3, 10)]
    assert pl7.intersection(Line(Point(2, 3), Point(4, 2))) == [
        Point3D(13/2, 3/4, 0)]
    r = Ray(Point(2, 3), Point(4, 2))
    assert Plane((1, 2, 0), normal_vector=(0, 0, 1)).intersection(r) == [
        Ray3D(Point(2, 3), Point(4, 2))]

    assert pl3.random_point() in pl3

    # issue sympy/sympy#8570
    l2 = Line3D(Point3D(Rational(50000004459633, 5000000000000),
                        Rational(-891926590718643, 1000000000000000),
                        Rational(231800966893633, 100000000000000)),
                Point3D(Rational(50000004459633, 50000000000000),
                        Rational(-222981647679771, 250000000000000),
                        Rational(231800966893633, 100000000000000)))

    p2 = Plane(Point3D(Rational(402775636372767, 100000000000000),
                       Rational(-97224357654973, 100000000000000),
                       Rational(216793600814789, 100000000000000)),
               (-Float(9.00000087501922), Float(-4.81170658872543e-13),
                Float(0.0)))

    assert sstr([i.evalf(2) for i in p2.intersection(l2)]) == \
        '[Point3D(4.0, -0.89, 2.3)]'
예제 #44
0
def test_sympyissue_12221():
    e = sqrt(1 - x) / x
    r = 2 * I * (-sqrt(2) - asin(sqrt(3) / 3) + asin(sqrt(5) / 5) + 2)
    assert integrate(e, (x, 3, 5)).simplify() == r
예제 #45
0
def test_sympyissue_4052():
    f = Rational(1, 2)*asin(x) + x*sqrt(1 - x**2)/2

    assert integrate(cos(asin(x)), x) == f
    assert integrate(sin(acos(x)), x) == f
예제 #46
0
def test_sympyissue_4052():
    f = Rational(1, 2) * asin(x) + x * sqrt(1 - x**2) / 2

    assert integrate(cos(asin(x)), x) == f
    assert integrate(sin(acos(x)), x) == f