예제 #1
0
    def _get_chrbands(self, limit, taxon):
        """
        :param limit:
        :return:

        """
        model = Model(self.graph)
        # TODO PYLINT figure out what limit was for and why it is unused
        line_counter = 0
        myfile = '/'.join((self.rawdir, self.files[taxon]['file']))
        logger.info("Processing Chr bands from FILE: %s", myfile)
        geno = Genotype(self.graph)
        monochrom = Monochrom(self.graph_type, self.are_bnodes_skized)

        # used to hold band definitions for a chr
        # in order to compute extent of encompasing bands

        mybands = {}
        # build the organism's genome from the taxon
        genome_label = self.files[taxon]['genome_label']
        taxon_id = 'NCBITaxon:'+taxon

        # add the taxon as a class.  adding the class label elsewhere
        model.addClassToGraph(taxon_id, None)
        model.addSynonym(taxon_id, genome_label)

        geno.addGenome(taxon_id, genome_label)

        # add the build and the taxon it's in
        build_num = self.files[taxon]['build_num']
        build_id = 'UCSC:'+build_num
        geno.addReferenceGenome(build_id, build_num, taxon_id)

        # process the bands
        with gzip.open(myfile, 'rb') as f:
            for line in f:
                # skip comments
                line = line.decode().strip()
                if re.match('^#', line):
                    continue

                # chr13	4500000	10000000	p12	stalk
                (scaffold, start, stop, band_num, rtype) = line.split('\t')
                line_counter += 1

                # NOTE some less-finished genomes have
                # placed and unplaced scaffolds
                # * Placed scaffolds:
                #       the scaffolds have been placed within a chromosome.
                # * Unlocalized scaffolds:
                #   although the chromosome within which the scaffold occurs
                #   is known, the scaffold's position or orientation
                #   is not known.
                # * Unplaced scaffolds:
                #   it is not known which chromosome the scaffold belongs to
                #
                # find out if the thing is a full on chromosome, or a scaffold:
                # ex: unlocalized scaffold: chr10_KL568008v1_random
                # ex: unplaced scaffold: chrUn_AABR07022428v1
                placed_scaffold_pattern = r'(chr(?:\d+|X|Y|Z|W|M))'
                unlocalized_scaffold_pattern = \
                    placed_scaffold_pattern+r'_(\w+)_random'
                unplaced_scaffold_pattern = r'chr(Un(?:_\w+)?)'

                m = re.match(placed_scaffold_pattern+r'$', scaffold)
                if m is not None and len(m.groups()) == 1:
                    # the chromosome is the first match of the pattern
                    chrom_num = m.group(1)
                else:
                    # skip over anything that isn't a placed_scaffold
                    # at the class level
                    logger.info("Found non-placed chromosome %s", scaffold)
                    chrom_num = None

                m_chr_unloc = re.match(unlocalized_scaffold_pattern, scaffold)
                m_chr_unplaced = re.match(unplaced_scaffold_pattern, scaffold)

                scaffold_num = None
                if m:
                    pass
                elif m_chr_unloc is not None and\
                        len(m_chr_unloc.groups()) == 2:
                    chrom_num = m_chr_unloc.group(1)
                    scaffold_num = chrom_num+'_'+m_chr_unloc.group(2)
                elif m_chr_unplaced is not None and\
                        len(m_chr_unplaced.groups()) == 1:
                    scaffold_num = m_chr_unplaced.group(1)
                else:
                    logger.error(
                        "There's a chr pattern that we aren't matching: %s",
                        scaffold)

                if chrom_num is not None:
                    # the chrom class (generic) id
                    chrom_class_id = makeChromID(chrom_num, taxon, 'CHR')

                    # first, add the chromosome class (in the taxon)
                    geno.addChromosomeClass(
                        chrom_num, taxon_id, self.files[taxon]['genome_label'])

                    # then, add the chromosome instance (from the given build)
                    geno.addChromosomeInstance(chrom_num, build_id, build_num,
                                               chrom_class_id)

                    # add the chr to the hashmap of coordinates for this build
                    # the chromosome coordinate space is itself
                    if chrom_num not in mybands.keys():
                        mybands[chrom_num] = {
                            'min': 0,
                            'max': int(stop),
                            'chr': chrom_num,
                            'ref': build_id,
                            'parent': None,
                            'stain': None,
                            'type': Feature.types['chromosome']}

                if scaffold_num is not None:
                    # this will put the coordinates of the scaffold
                    # in the scaffold-space and make sure that the scaffold
                    # is part of the correct parent.
                    # if chrom_num is None,
                    # then it will attach it to the genome,
                    # just like a reg chrom
                    mybands[scaffold_num] = {
                        'min': start,
                        'max': stop,
                        'chr': scaffold_num,
                        'ref': build_id,
                        'parent': chrom_num,
                        'stain': None,
                        'type': Feature.types['assembly_component'],
                        'synonym': scaffold}

                if band_num is not None and band_num.strip() != '':
                    # add the specific band
                    mybands[chrom_num+band_num] = {'min': start,
                                                   'max': stop,
                                                   'chr': chrom_num,
                                                   'ref': build_id,
                                                   'parent': None,
                                                   'stain': None,
                                                   'type': None}

                    # add the staining intensity of the band
                    if re.match(r'g(neg|pos|var)', rtype):
                        mybands[chrom_num+band_num]['stain'] = \
                            Feature.types.get(rtype)

                    # get the parent bands, and make them unique
                    parents = list(
                        monochrom.make_parent_bands(band_num, set()))
                    # alphabetical sort will put them in smallest to biggest,
                    # so we reverse
                    parents.sort(reverse=True)
                    # print('parents of',chrom,band,':',parents)

                    if len(parents) > 0:
                        mybands[chrom_num+band_num]['parent'] = \
                            chrom_num+parents[0]
                else:
                    # TODO PYLINT why is 'parent'
                    # a list() a couple of lines up and a set() here?
                    parents = set()

                # loop through the parents and add them to the hash
                # add the parents to the graph, in hierarchical order
                # TODO PYLINT Consider using enumerate
                # instead of iterating with range and len
                for i in range(len(parents)):
                    rti = getChrPartTypeByNotation(parents[i])

                    pnum = chrom_num+parents[i]
                    sta = int(start)
                    sto = int(stop)
                    if pnum not in mybands.keys():
                        # add the parental band to the hash
                        b = {'min': min(sta, sto),
                             'max': max(sta, sto),
                             'chr': chrom_num,
                             'ref': build_id,
                             'parent': None,
                             'stain': None,
                             'type': rti}
                        mybands[pnum] = b
                    else:
                        # band already in the hash means it's a grouping band
                        # need to update the min/max coords
                        b = mybands.get(pnum)
                        b['min'] = min(sta, sto, b['min'])
                        b['max'] = max(sta, sto, b['max'])
                        mybands[pnum] = b

                        # also, set the max for the chrom
                        c = mybands.get(chrom_num)
                        c['max'] = max(sta, sto, c['max'])
                        mybands[chrom_num] = c

                    # add the parent relationships to each
                    if i < len(parents) - 1:
                        mybands[pnum]['parent'] = chrom_num+parents[i+1]
                    else:
                        # add the last one (p or q usually)
                        # as attached to the chromosome
                        mybands[pnum]['parent'] = chrom_num

        f.close()  # end looping through file

        # loop through the hash and add the bands to the graph
        for b in mybands.keys():
            myband = mybands.get(b)
            band_class_id = makeChromID(b, taxon, 'CHR')
            band_class_label = makeChromLabel(b, genome_label)
            band_build_id = makeChromID(b, build_num, 'MONARCH')
            band_build_label = makeChromLabel(b, build_num)
            # the build-specific chrom
            chrom_in_build_id = makeChromID(
                myband['chr'], build_num, 'MONARCH')
            # if it's != part, then add the class
            if myband['type'] != Feature.types['assembly_component']:
                model.addClassToGraph(band_class_id,
                                      band_class_label, myband['type'])
                bfeature = Feature(self.graph, band_build_id, band_build_label,
                                   band_class_id)
            else:
                bfeature = Feature(self.graph, band_build_id, band_build_label,
                                   myband['type'])
                if 'synonym' in myband:
                    model.addSynonym(band_build_id, myband['synonym'])

            if myband['parent'] is None:
                if myband['type'] == Feature.types['assembly_component']:
                    # since we likely don't know the chr,
                    # add it as a part of the build
                    geno.addParts(band_build_id, build_id)
            elif myband['type'] == Feature.types['assembly_component']:
                # geno.addParts(band_build_id, chrom_in_build_id)
                parent_chrom_in_build = makeChromID(myband['parent'],
                                                    build_num, 'MONARCH')
                bfeature.addSubsequenceOfFeature(parent_chrom_in_build)

            # add the band as a feature
            # (which also instantiates the owl:Individual)
            bfeature.addFeatureStartLocation(myband['min'], chrom_in_build_id)
            bfeature.addFeatureEndLocation(myband['max'], chrom_in_build_id)
            if 'stain' in myband and myband['stain'] is not None:
                # TODO 'has_staining_intensity' being dropped by MB
                bfeature.addFeatureProperty(
                    Feature.properties['has_staining_intensity'],
                    myband['stain'])

            # type the band as a faldo:Region directly (add_region=False)
            # bfeature.setNoBNodes(self.nobnodes)
            # to come when we merge in ZFIN.py
            bfeature.addFeatureToGraph(False)

        return
예제 #2
0
    def _get_chrbands(self, limit, src_key, genome_id):
        """
        :param limit:
        :return:

        """
        tax_num = src_key
        if limit is None:
            limit = sys.maxsize  # practical limit anyway
        model = Model(self.graph)
        line_num = 0
        myfile = '/'.join((self.rawdir, self.files[src_key]['file']))
        LOG.info("Processing Chr bands from FILE: %s", myfile)
        geno = Genotype(self.graph)
        monochrom = Monochrom(self.graph_type, self.are_bnodes_skized)

        # used to hold band definitions for a chr
        # in order to compute extent of encompasing bands

        mybands = {}
        # build the organism's genome from the taxon
        genome_label = self.files[src_key]['genome_label']
        taxon_curie = 'NCBITaxon:' + tax_num
        species_name = self.globaltcid[taxon_curie]  # for logging

        # add the taxon as a class.  adding the class label elsewhere
        model.addClassToGraph(taxon_curie, None)
        model.addSynonym(taxon_curie, genome_label)

        geno.addGenome(taxon_curie, genome_label, genome_id)

        # add the build and the taxon it's in
        build_num = self.files[src_key]['build_num']
        build_id = 'UCSC:' + build_num
        geno.addReferenceGenome(build_id, build_num, taxon_curie)

        # cat (at least)  also has  chr[BDAECF]... hex? must be a back cat.
        if tax_num == self.localtt['Felis catus']:
            placed_scaffold_regex = re.compile(
                r'(chr(?:[BDAECF]\d+|X|Y|Z|W|M|))$')
        else:
            placed_scaffold_regex = re.compile(r'(chr(?:\d+|X|Y|Z|W|M))$')
        unlocalized_scaffold_regex = re.compile(r'_(\w+)_random')
        unplaced_scaffold_regex = re.compile(r'chr(Un(?:_\w+)?)')

        # process the bands
        col = self.files[src_key]['columns']

        with gzip.open(myfile, 'rb') as binreader:
            for line in binreader:
                line_num += 1
                # skip comments
                line = line.decode().strip()
                if line[0] == '#' or line_num > limit:
                    continue
                # chr13	4500000	10000000	p12	stalk
                row = line.split('\t')
                scaffold = row[col.index('chrom')].strip()
                start = row[col.index('chromStart')]
                stop = row[col.index('chromEnd')]
                band_num = row[col.index('name')].strip()
                rtype = row[col.index('gieStain')]

                # NOTE some less-finished genomes have
                # placed and unplaced scaffolds
                # * Placed scaffolds:
                #       the scaffolds have been placed within a chromosome.
                # * Unlocalized scaffolds:
                #   although the chromosome within which the scaffold occurs
                #   is known, the scaffold's position or orientation
                #   is not known.
                # * Unplaced scaffolds:
                #   it is not known which chromosome the scaffold belongs to
                #
                # find out if the thing is a full on chromosome, or a scaffold:
                # ex: unlocalized scaffold: chr10_KL568008v1_random
                # ex: unplaced scaffold: chrUn_AABR07022428v1

                mch = placed_scaffold_regex.match(scaffold)
                if mch is not None and len(mch.groups()) == 1:
                    # the chromosome is the first match of the pattern
                    chrom_num = mch.group(1)
                else:
                    # skip over anything that isn't a placed_scaffold at the class level
                    # LOG.info("Found non-placed chromosome %s", scaffold)
                    chrom_num = None

                m_chr_unloc = unlocalized_scaffold_regex.match(scaffold)
                m_chr_unplaced = unplaced_scaffold_regex.match(scaffold)

                scaffold_num = None
                if mch:
                    pass
                elif m_chr_unloc is not None and len(
                        m_chr_unloc.groups()) == 2:
                    chrom_num = m_chr_unloc.group(1)
                    scaffold_num = chrom_num + '_' + m_chr_unloc.group(2)
                elif m_chr_unplaced is not None and len(
                        m_chr_unplaced.groups()) == 1:
                    scaffold_num = m_chr_unplaced.group(1)
                # else:
                #    LOG.error(
                #        "There's a chr pattern that we aren't matching: %s", scaffold)

                if chrom_num is not None:
                    # the chrom class (generic) id
                    chrom_class_id = makeChromID(chrom_num, tax_num, 'CHR')

                    # first, add the chromosome class (in the taxon)
                    geno.addChromosomeClass(
                        chrom_num, taxon_curie,
                        self.files[src_key]['genome_label'])

                    # then, add the chromosome instance (from the given build)
                    geno.addChromosomeInstance(chrom_num, build_id, build_num,
                                               chrom_class_id)

                    # add the chr to the hashmap of coordinates for this build
                    # the chromosome coordinate space is itself
                    if chrom_num not in mybands.keys():
                        mybands[chrom_num] = {
                            'min': 0,
                            'max': int(stop),
                            'chr': chrom_num,
                            'ref': build_id,
                            'parent': None,
                            'stain': None,
                            'type': self.globaltt['chromosome']
                        }
                elif scaffold_num is not None:
                    # this will put the coordinates of the scaffold
                    # in the scaffold-space and make sure that the scaffold
                    # is part of the correct parent.
                    # if chrom_num is None,
                    # then it will attach it to the genome,
                    # just like a reg chrom
                    mybands[scaffold_num] = {
                        'min': start,
                        'max': stop,
                        'chr': scaffold_num,
                        'ref': build_id,
                        'parent': chrom_num,
                        'stain': None,
                        'type': self.globaltt['assembly_component'],
                        'synonym': scaffold
                    }
                else:
                    LOG.info('%s line %i DROPPED chromosome/scaffold  %s',
                             species_name, line_num, scaffold)

                parents = list()

                # see it new types have showed up
                if rtype is not None and rtype not in [
                        'gneg', 'gpos25', 'gpos33', 'gpos50', 'gpos66',
                        'gpos75', 'gpos100', 'acen', 'gvar', 'stalk'
                ]:
                    LOG.info('Unknown gieStain type "%s" in %s at %i', rtype,
                             src_key, line_num)
                    self.globaltt[rtype]  # blow up

                if rtype == 'acen':  # hacky, revisit if ontology improves
                    rtype = self.localtt[rtype]

                if band_num is not None and band_num != '' and \
                        rtype is not None and rtype != '':
                    # add the specific band
                    mybands[chrom_num + band_num] = {
                        'min': start,
                        'max': stop,
                        'chr': chrom_num,
                        'ref': build_id,
                        'parent': None,
                        'stain': None,
                        'type': self.globaltt[rtype],
                    }

                    # add the staining intensity of the band
                    # get the parent bands, and make them unique
                    parents = list(monochrom.make_parent_bands(
                        band_num, set()))
                    # alphabetical sort will put them in smallest to biggest,
                    # so we reverse
                    parents.sort(reverse=True)
                    # print('parents of',chrom,band,':',parents)

                    if len(parents) > 0:
                        mybands[chrom_num +
                                band_num]['parent'] = chrom_num + parents[0]
                    # else:   # band has no parents

                # loop through the parents and add them to the dict
                # add the parents to the graph, in hierarchical order
                # TODO PYLINT Consider using enumerate
                # instead of iterating with range and len
                for i in range(len(parents)):
                    rti = getChrPartTypeByNotation(parents[i], self.graph)

                    pnum = chrom_num + parents[i]
                    sta = int(start)
                    sto = int(stop)
                    if pnum is not None and pnum not in mybands.keys():
                        # add the parental band to the hash
                        bnd = {
                            'min': min(sta, sto),
                            'max': max(sta, sto),
                            'chr': chrom_num,
                            'ref': build_id,
                            'parent': None,
                            'stain': None,
                            'type': rti
                        }
                        mybands[pnum] = bnd
                    elif pnum is not None:
                        # band already in the hash means it's a grouping band
                        # need to update the min/max coords
                        bnd = mybands.get(pnum)
                        bnd['min'] = min(sta, sto, bnd['min'])
                        bnd['max'] = max(sta, sto, bnd['max'])
                        mybands[pnum] = bnd

                        # also, set the max for the chrom
                        chrom = mybands.get(chrom_num)
                        chrom['max'] = max(sta, sto, chrom['max'])
                        mybands[chrom_num] = chrom
                    else:
                        LOG.error("pnum is None")
                    # add the parent relationships to each
                    if i < len(parents) - 1:
                        mybands[pnum]['parent'] = chrom_num + parents[i + 1]
                    else:
                        # add the last one (p or q usually)
                        # as attached to the chromosome
                        mybands[pnum]['parent'] = chrom_num

        binreader.close()  # end looping through file

        # loop through the hash and add the bands to the graph
        for bnd in mybands.keys():
            myband = mybands.get(bnd)
            band_class_id = makeChromID(bnd, tax_num, 'CHR')
            band_class_label = makeChromLabel(bnd, genome_label)
            band_build_id = makeChromID(bnd, build_num, 'MONARCH')
            band_build_label = makeChromLabel(bnd, build_num)
            # the build-specific chrom
            chrom_in_build_id = makeChromID(myband['chr'], build_num,
                                            'MONARCH')
            # if it's != part, then add the class
            if myband['type'] != self.globaltt['assembly_component']:
                model.addClassToGraph(band_class_id, band_class_label,
                                      myband['type'])
                bfeature = Feature(self.graph, band_build_id, band_build_label,
                                   band_class_id)
            else:
                bfeature = Feature(self.graph, band_build_id, band_build_label,
                                   myband['type'])
                if 'synonym' in myband:
                    model.addSynonym(band_build_id, myband['synonym'])

            if myband['parent'] is None:
                if myband['type'] == self.globaltt['assembly_component']:
                    # since we likely don't know the chr,
                    # add it as a part of the build
                    geno.addParts(band_build_id, build_id)
            elif myband['type'] == self.globaltt['assembly_component']:
                # geno.addParts(band_build_id, chrom_in_build_id)
                parent_chrom_in_build = makeChromID(myband['parent'],
                                                    build_num, 'MONARCH')
                bfeature.addSubsequenceOfFeature(parent_chrom_in_build)

            # add the band as a feature
            # (which also instantiates the owl:Individual)
            bfeature.addFeatureStartLocation(myband['min'], chrom_in_build_id)
            bfeature.addFeatureEndLocation(myband['max'], chrom_in_build_id)
            if 'stain' in myband and myband['stain'] is not None:
                bfeature.addFeatureProperty(
                    self.globaltt['has_sequence_attribute'], myband['stain'])

            # type the band as a faldo:Region directly (add_region=False)
            # bfeature.setNoBNodes(self.nobnodes)
            # to come when we merge in ZFIN.py
            bfeature.addFeatureToGraph(False)
예제 #3
0
    def _get_chrbands(self, limit, taxon):
        """
        :param limit:
        :return:

        """
        model = Model(self.graph)
        # TODO PYLINT figure out what limit was for and why it is unused
        line_counter = 0
        myfile = '/'.join((self.rawdir, self.files[taxon]['file']))
        logger.info("Processing Chr bands from FILE: %s", myfile)
        geno = Genotype(self.graph)
        monochrom = Monochrom(self.graph_type, self.are_bnodes_skized)

        # used to hold band definitions for a chr
        # in order to compute extent of encompasing bands

        mybands = {}
        # build the organism's genome from the taxon
        genome_label = self.files[taxon]['genome_label']
        taxon_id = 'NCBITaxon:' + taxon

        # add the taxon as a class.  adding the class label elsewhere
        model.addClassToGraph(taxon_id, None)
        model.addSynonym(taxon_id, genome_label)

        geno.addGenome(taxon_id, genome_label)

        # add the build and the taxon it's in
        build_num = self.files[taxon]['build_num']
        build_id = 'UCSC:' + build_num
        geno.addReferenceGenome(build_id, build_num, taxon_id)

        # process the bands
        with gzip.open(myfile, 'rb') as f:
            for line in f:
                # skip comments
                line = line.decode().strip()
                if re.match('^#', line):
                    continue

                # chr13	4500000	10000000	p12	stalk
                (scaffold, start, stop, band_num, rtype) = line.split('\t')
                line_counter += 1

                # NOTE some less-finished genomes have
                # placed and unplaced scaffolds
                # * Placed scaffolds:
                #       the scaffolds have been placed within a chromosome.
                # * Unlocalized scaffolds:
                #   although the chromosome within which the scaffold occurs
                #   is known, the scaffold's position or orientation
                #   is not known.
                # * Unplaced scaffolds:
                #   it is not known which chromosome the scaffold belongs to
                #
                # find out if the thing is a full on chromosome, or a scaffold:
                # ex: unlocalized scaffold: chr10_KL568008v1_random
                # ex: unplaced scaffold: chrUn_AABR07022428v1
                placed_scaffold_pattern = r'(chr(?:\d+|X|Y|Z|W|M))'
                unlocalized_scaffold_pattern = placed_scaffold_pattern + r'_(\w+)_random'
                unplaced_scaffold_pattern = r'chr(Un(?:_\w+)?)'

                mch = re.match(placed_scaffold_pattern + r'$', scaffold)
                if mch is not None and len(mch.groups()) == 1:
                    # the chromosome is the first match of the pattern
                    chrom_num = mch.group(1)
                else:
                    # skip over anything that isn't a placed_scaffold
                    # at the class level
                    logger.info("Found non-placed chromosome %s", scaffold)
                    chrom_num = None

                m_chr_unloc = re.match(unlocalized_scaffold_pattern, scaffold)
                m_chr_unplaced = re.match(unplaced_scaffold_pattern, scaffold)

                scaffold_num = None
                if mch:
                    pass
                elif m_chr_unloc is not None and len(
                        m_chr_unloc.groups()) == 2:
                    chrom_num = m_chr_unloc.group(1)
                    scaffold_num = chrom_num + '_' + m_chr_unloc.group(2)
                elif m_chr_unplaced is not None and len(
                        m_chr_unplaced.groups()) == 1:
                    scaffold_num = m_chr_unplaced.group(1)
                else:
                    logger.error(
                        "There's a chr pattern that we aren't matching: %s",
                        scaffold)

                if chrom_num is not None:
                    # the chrom class (generic) id
                    chrom_class_id = makeChromID(chrom_num, taxon, 'CHR')

                    # first, add the chromosome class (in the taxon)
                    geno.addChromosomeClass(chrom_num, taxon_id,
                                            self.files[taxon]['genome_label'])

                    # then, add the chromosome instance (from the given build)
                    geno.addChromosomeInstance(chrom_num, build_id, build_num,
                                               chrom_class_id)

                    # add the chr to the hashmap of coordinates for this build
                    # the chromosome coordinate space is itself
                    if chrom_num not in mybands.keys():
                        mybands[chrom_num] = {
                            'min': 0,
                            'max': int(stop),
                            'chr': chrom_num,
                            'ref': build_id,
                            'parent': None,
                            'stain': None,
                            'type': self.globaltt['chromosome']
                        }

                if scaffold_num is not None:
                    # this will put the coordinates of the scaffold
                    # in the scaffold-space and make sure that the scaffold
                    # is part of the correct parent.
                    # if chrom_num is None,
                    # then it will attach it to the genome,
                    # just like a reg chrom
                    mybands[scaffold_num] = {
                        'min': start,
                        'max': stop,
                        'chr': scaffold_num,
                        'ref': build_id,
                        'parent': chrom_num,
                        'stain': None,
                        'type': self.globaltt['assembly_component'],
                        'synonym': scaffold
                    }

                if band_num is not None and band_num.strip() != '':
                    # add the specific band
                    mybands[chrom_num + band_num] = {
                        'min': start,
                        'max': stop,
                        'chr': chrom_num,
                        'ref': build_id,
                        'parent': None,
                        'stain': None,
                        'type': None
                    }

                    # add the staining intensity of the band
                    if re.match(r'g(neg|pos|var)', rtype):
                        mybands[chrom_num +
                                band_num]['stain'] = self.resolve(rtype)

                    # get the parent bands, and make them unique
                    parents = list(monochrom.make_parent_bands(
                        band_num, set()))
                    # alphabetical sort will put them in smallest to biggest,
                    # so we reverse
                    parents.sort(reverse=True)
                    # print('parents of',chrom,band,':',parents)

                    if len(parents) > 0:
                        mybands[chrom_num +
                                band_num]['parent'] = chrom_num + parents[0]
                else:
                    # TODO PYLINT why is 'parent'
                    # a list() a couple of lines up and a set() here?
                    parents = set()

                # loop through the parents and add them to the hash
                # add the parents to the graph, in hierarchical order
                # TODO PYLINT Consider using enumerate
                # instead of iterating with range and len
                for i in range(len(parents)):
                    rti = getChrPartTypeByNotation(parents[i])

                    pnum = chrom_num + parents[i]
                    sta = int(start)
                    sto = int(stop)
                    if pnum not in mybands.keys():
                        # add the parental band to the hash
                        bnd = {
                            'min': min(sta, sto),
                            'max': max(sta, sto),
                            'chr': chrom_num,
                            'ref': build_id,
                            'parent': None,
                            'stain': None,
                            'type': rti
                        }
                        mybands[pnum] = bnd
                    else:
                        # band already in the hash means it's a grouping band
                        # need to update the min/max coords
                        bnd = mybands.get(pnum)
                        bnd['min'] = min(sta, sto, bnd['min'])
                        bnd['max'] = max(sta, sto, bnd['max'])
                        mybands[pnum] = bnd

                        # also, set the max for the chrom
                        chrom = mybands.get(chrom_num)
                        chrom['max'] = max(sta, sto, chrom['max'])
                        mybands[chrom_num] = chrom

                    # add the parent relationships to each
                    if i < len(parents) - 1:
                        mybands[pnum]['parent'] = chrom_num + parents[i + 1]
                    else:
                        # add the last one (p or q usually)
                        # as attached to the chromosome
                        mybands[pnum]['parent'] = chrom_num

        f.close()  # end looping through file

        # loop through the hash and add the bands to the graph
        for bnd in mybands.keys():
            myband = mybands.get(bnd)
            band_class_id = makeChromID(bnd, taxon, 'CHR')
            band_class_label = makeChromLabel(bnd, genome_label)
            band_build_id = makeChromID(bnd, build_num, 'MONARCH')
            band_build_label = makeChromLabel(bnd, build_num)
            # the build-specific chrom
            chrom_in_build_id = makeChromID(myband['chr'], build_num,
                                            'MONARCH')
            # if it's != part, then add the class
            if myband['type'] != self.globaltt['assembly_component']:
                model.addClassToGraph(band_class_id, band_class_label,
                                      myband['type'])
                bfeature = Feature(self.graph, band_build_id, band_build_label,
                                   band_class_id)
            else:
                bfeature = Feature(self.graph, band_build_id, band_build_label,
                                   myband['type'])
                if 'synonym' in myband:
                    model.addSynonym(band_build_id, myband['synonym'])

            if myband['parent'] is None:
                if myband['type'] == self.globaltt['assembly_component']:
                    # since we likely don't know the chr,
                    # add it as a part of the build
                    geno.addParts(band_build_id, build_id)
            elif myband['type'] == self.globaltt['assembly_component']:
                # geno.addParts(band_build_id, chrom_in_build_id)
                parent_chrom_in_build = makeChromID(myband['parent'],
                                                    build_num, 'MONARCH')
                bfeature.addSubsequenceOfFeature(parent_chrom_in_build)

            # add the band as a feature
            # (which also instantiates the owl:Individual)
            bfeature.addFeatureStartLocation(myband['min'], chrom_in_build_id)
            bfeature.addFeatureEndLocation(myband['max'], chrom_in_build_id)
            if 'stain' in myband and myband['stain'] is not None:
                bfeature.addFeatureProperty(
                    self.globaltt['has_sequence_attribute'], myband['stain'])

            # type the band as a faldo:Region directly (add_region=False)
            # bfeature.setNoBNodes(self.nobnodes)
            # to come when we merge in ZFIN.py
            bfeature.addFeatureToGraph(False)

        return