예제 #1
0
class GenotypeTestCase(unittest.TestCase):
    def setUp(self):
        self.graph = RDFGraph()
        self.curie_map = curie_map.get()
        self.genotype = Genotype(self.graph)

    def tearDown(self):
        self.genotype = None

    def test_addGenotype(self):
        from rdflib.namespace import RDFS, URIRef
        from rdflib import Literal
        from dipper.utils.CurieUtil import CurieUtil
        cutil = CurieUtil(self.curie_map)
        gid = 'MGI:5515892'
        label = \
            'Pmp22<Tr-2J>/Pmp22<+> [C57BL/6J-Pmp22<Tr-2J>/GrsrJ]'
        self.genotype.addGenotype(gid, label)
        self.assertTrue((URIRef(cutil.get_uri(gid)), RDFS['label'],
                         Literal(label)) in self.genotype.graph)
예제 #2
0
class GenotypeTestCase(unittest.TestCase):

    def setUp(self):
        self.graph = Graph()
        self.curie_map = curie_map.get()
        self.genotype = Genotype(self.graph)

    def tearDown(self):
        self.genotype = None

    def test_addGenotype(self):
        from rdflib.namespace import RDFS,URIRef
        from rdflib import Literal
        from dipper.utils.CurieUtil import CurieUtil
        cu = CurieUtil(self.curie_map)
        id = 'MGI:5515892'
        label = \
            'Pmp22<Tr-2J>/Pmp22<+> [C57BL/6J-Pmp22<Tr-2J>/GrsrJ]'
        self.genotype.addGenotype(id, label)
        self.assertTrue((URIRef(cu.get_uri(id)), RDFS['label'],
                         Literal(label)) in self.genotype.graph)
예제 #3
0
    def _process_data(self, raw, limit=None):
        """
        This function will process the data files from Coriell.
        We make the assumption that any alleles listed are variants
        (alternates to w.t.)

        Triples: (examples)

        :NIGMSrepository a CLO_0000008 #repository
        label : NIGMS Human Genetic Cell Repository
        foaf:page https://catalog.coriell.org/0/sections/collections/NIGMS/?SsId=8

            line_id a CL_0000057,  #fibroblast line
                derives_from patient_id
                part_of :NIGMSrepository
                RO:model_of OMIM:disease_id

            patient id a foaf:person,
                label: "fibroblast from patient 12345 with disease X"
                member_of family_id  #what is the right thing here?
                SIO:race EFO:caucasian  #subclass of EFO:0001799
                in_taxon NCBITaxon:9606
                dc:description Literal(remark)
                RO:has_phenotype OMIM:disease_id
                GENO:has_genotype genotype_id

            family_id a owl:NamedIndividual
                foaf:page "https://catalog.coriell.org/0/Sections/BrowseCatalog/FamilyTypeSubDetail.aspx?PgId=402&fam=2104&coll=GM"

            genotype_id a intrinsic_genotype
                GENO:has_alternate_part allelic_variant_id
                we don't necessarily know much about the genotype,
                other than the allelic variant. also there's the sex here

            pub_id mentions cell_line_id

        :param raw:
        :param limit:
        :return:
        """
        logger.info("Processing Data from %s", raw)
        gu = GraphUtils(curie_map.get())

        if self.testMode:      # set the graph to build
            g = self.testgraph
        else:
            g = self.graph

        line_counter = 0
        geno = Genotype(g)
        du = DipperUtil()

        gu.loadProperties(g, geno.object_properties, gu.OBJPROP)
        gu.loadAllProperties(g)

        with open(raw, 'r', encoding="iso-8859-1") as csvfile:
            filereader = csv.reader(csvfile, delimiter=',', quotechar='\"')
            next(filereader, None)  # skip the header row
            for row in filereader:
                if not row:
                    pass
                else:
                    line_counter += 1

                    (catalog_id, description, omim_number, sample_type,
                     cell_line_available, dna_in_stock, dna_ref, gender, age,
                     race, ethnicity, affected, karyotype, relprob, mutation,
                     gene, family_id, collection, url, cat_remark, pubmed_ids,
                     family_member, variant_id, dbsnp_id, species) = row

                    # example:
                    # GM00003,HURLER SYNDROME,607014,Fibroblast,Yes,No,,Female,26 YR,Caucasian,,,,
                    # parent,,,39,NIGMS Human Genetic Cell Repository,
                    # http://ccr.coriell.org/Sections/Search/Sample_Detail.aspx?Ref=GM00003,
                    # 46;XX; clinically normal mother of a child with Hurler syndrome; proband not in Repository,,
                    # 2,,18343,H**o sapiens

                    if self.testMode and catalog_id not in self.test_lines:
                        # skip rows not in our test lines, when in test mode
                        continue

                    # ###########    BUILD REQUIRED VARIABLES    ###########

                    # Make the cell line ID
                    cell_line_id = 'Coriell:'+catalog_id.strip()

                    # Map the cell/sample type
                    cell_type = self._map_cell_type(sample_type)

                    # Make a cell line label
                    line_label = \
                        collection.partition(' ')[0]+'-'+catalog_id.strip()

                    # Map the repository/collection
                    repository = self._map_collection(collection)

                    # patients are uniquely identified by one of:
                    # dbsnp id (which is == an individual haplotype)
                    # family id + family member (if present) OR
                    # probands are usually family member zero
                    # cell line id
                    # since some patients have >1 cell line derived from them,
                    # we must make sure that the genotype is attached to
                    # the patient, and can be inferred to the cell line
                    # examples of repeated patients are:
                    #   famid=1159, member=1; fam=152,member=1

                    # Make the patient ID

                    # make an anonymous patient
                    patient_id = '_person'
                    if self.nobnodes:
                        patient_id = ':'+patient_id
                    if family_id != '':
                        patient_id = \
                            '-'.join((patient_id, family_id, family_member))
                    else:
                        # make an anonymous patient
                        patient_id = '-'.join((patient_id, catalog_id.strip()))

                    # properties of the individual patients:  sex, family id,
                    # member/relproband, description descriptions are
                    # really long and ugly SCREAMING text, so need to clean up
                    # the control cases are so odd with this labeling scheme;
                    # but we'll deal with it as-is for now.
                    short_desc = (description.split(';')[0]).capitalize()
                    if affected == 'Yes':
                        affected = 'affected'
                    elif affected == 'No':
                        affected = 'unaffected'
                    gender = gender.lower()
                    patient_label = ' '.join((affected, gender, relprob))
                    if relprob == 'proband':
                        patient_label = \
                            ' '.join(
                                (patient_label.strip(), 'with', short_desc))
                    else:
                        patient_label = \
                            ' '.join(
                                (patient_label.strip(), 'of proband with',
                                 short_desc))

                    # #############    BUILD THE CELL LINE    #############

                    # Adding the cell line as a typed individual.
                    cell_line_reagent_id = 'CLO:0000031'

                    gu.addIndividualToGraph(
                        g, cell_line_id, line_label, cell_line_reagent_id)

                    # add the equivalent id == dna_ref
                    if dna_ref != '' and dna_ref != catalog_id:
                        equiv_cell_line = 'Coriell:'+dna_ref
                        # some of the equivalent ids are not defined
                        # in the source data; so add them
                        gu.addIndividualToGraph(
                            g, equiv_cell_line, None, cell_line_reagent_id)
                        gu.addSameIndividual(g, cell_line_id, equiv_cell_line)

                    # Cell line derives from patient
                    geno.addDerivesFrom(cell_line_id, patient_id)
                    geno.addDerivesFrom(cell_line_id, cell_type)

                    # Cell line a member of repository
                    gu.addMember(g, repository, cell_line_id)

                    if cat_remark != '':
                        gu.addDescription(g, cell_line_id, cat_remark)

                    # Cell age_at_sampling
                    # TODO add the age nodes when modeled properly in #78
                    # if (age != ''):
                        # this would give a BNode that is an instance of Age.
                        # but i don't know how to connect
                        # the age node to the cell line? we need to ask @mbrush
                        # age_id = '_'+re.sub('\s+','_',age)
                        # gu.addIndividualToGraph(
                        #   g,age_id,age,self.terms['age'])
                        # gu.addTriple(
                        #   g,age_id,self.properties['has_measurement'],age,
                        #   True)

                    # #############    BUILD THE PATIENT    #############

                    # Add the patient ID as an individual.
                    gu.addPerson(g, patient_id, patient_label)
                    # TODO map relationship to proband as a class
                    # (what ontology?)

                    # Add race of patient
                    # FIXME: Adjust for subcategories based on ethnicity field
                    # EDIT: There are 743 different entries for ethnicity...
                    # Too many to map?
                    # Add ethnicity as literal in addition to the mapped race?
                    # Adjust the ethnicity txt (if using)
                    # to initial capitalization to remove ALLCAPS

                    # TODO race should go into the individual's background
                    # and abstracted out to the Genotype class punting for now.
                    # if race != '':
                    #    mapped_race = self._map_race(race)
                    #    if mapped_race is not None:
                    #        gu.addTriple(
                    #           g,patient_id,self.terms['race'],mapped_race)
                    #        gu.addSubclass(
                    #           g,self.terms['ethnic_group'],mapped_race)

                    # #############    BUILD THE FAMILY    #############

                    # Add triples for family_id, if present.
                    if family_id != '':
                        family_comp_id = 'CoriellFamily:'+family_id

                        family_label = \
                            ' '.join(('Family of proband with', short_desc))

                        # Add the family ID as a named individual
                        gu.addIndividualToGraph(
                            g, family_comp_id, family_label,
                            geno.genoparts['family'])

                        # Add the patient as a member of the family
                        gu.addMemberOf(g, patient_id, family_comp_id)

                    # #############    BUILD THE GENOTYPE   #############

                    # the important things to pay attention to here are:
                    # karyotype = chr rearrangements  (somatic?)
                    # mutation = protein-level mutation as a label,
                    # often from omim
                    # gene = gene symbol - TODO get id
                    # variant_id = omim variant ids (; delimited)
                    # dbsnp_id = snp individual ids = full genotype?

                    # note GM00633 is a good example of chromosomal variation
                    # - do we have enough to capture this?
                    # GM00325 has both abnormal karyotype and variation

                    # make an assumption that if the taxon is blank,
                    # that it is human!
                    if species is None or species == '':
                        species = 'H**o sapiens'
                    taxon = self._map_species(species)

                    # if there's a dbSNP id,
                    # this is actually the individual's genotype
                    genotype_id = None
                    genotype_label = None
                    if dbsnp_id != '':
                        genotype_id = 'dbSNPIndividual:'+dbsnp_id.strip()

                    omim_map = {}
                    gvc_id = None

                    # some of the karyotypes are encoded
                    # with terrible hidden codes. remove them here
                    # i've seen a <98> character
                    karyotype = du.remove_control_characters(karyotype)
                    karyotype_id = None
                    if karyotype.strip() != '':
                        karyotype_id = \
                            '_'+re.sub('MONARCH:', '', self.make_id(karyotype))
                        if self.nobnodes:
                            karyotype_id = ':'+karyotype_id
                        # add karyotype as karyotype_variation_complement
                        gu.addIndividualToGraph(
                            g, karyotype_id, karyotype,
                            geno.genoparts['karyotype_variation_complement'])
                        # TODO break down the karyotype into parts
                        # and map into GENO. depends on #77

                        # place the karyotype in a location(s).
                        karyo_chrs = \
                            self._get_affected_chromosomes_from_karyotype(
                                karyotype)
                        for c in karyo_chrs:
                            chr_id = makeChromID(c, taxon, 'CHR')
                            # add an anonymous sequence feature,
                            # each located on chr
                            karyotype_feature_id = '-'.join((karyotype_id, c))
                            karyotype_feature_label = \
                                'some karyotype alteration on chr'+str(c)
                            f = Feature(
                                karyotype_feature_id, karyotype_feature_label,
                                geno.genoparts['sequence_alteration'])
                            f.addFeatureStartLocation(None, chr_id)
                            f.addFeatureToGraph(g)
                            f.loadAllProperties(g)
                            geno.addParts(
                                karyotype_feature_id, karyotype_id,
                                geno.object_properties['has_alternate_part'])

                    if gene != '':
                        vl = gene+'('+mutation+')'

                    # fix the variant_id so it's always in the same order
                    vids = variant_id.split(';')
                    variant_id = ';'.join(sorted(list(set(vids))))

                    if karyotype.strip() != '' \
                            and not self._is_normal_karyotype(karyotype):
                        mutation = mutation.strip()
                        gvc_id = karyotype_id
                        if variant_id != '':
                            gvc_id = '_' + variant_id.replace(';', '-') + '-' \
                                    + re.sub(r'\w*:', '', karyotype_id)
                        if mutation.strip() != '':
                            gvc_label = '; '.join((vl, karyotype))
                        else:
                            gvc_label = karyotype
                    elif variant_id.strip() != '':
                        gvc_id = '_' + variant_id.replace(';', '-')
                        gvc_label = vl
                    else:
                        # wildtype?
                        pass

                    if gvc_id is not None and gvc_id != karyotype_id \
                            and self.nobnodes:
                        gvc_id = ':'+gvc_id

                    # add the karyotype to the gvc.
                    # use reference if normal karyotype
                    karyo_rel = geno.object_properties['has_alternate_part']
                    if self._is_normal_karyotype(karyotype):
                        karyo_rel = \
                            geno.object_properties['has_reference_part']
                    if karyotype_id is not None \
                            and not self._is_normal_karyotype(karyotype) \
                            and gvc_id is not None and karyotype_id != gvc_id:
                        geno.addParts(karyotype_id, gvc_id, karyo_rel)

                    if variant_id.strip() != '':
                        # split the variants & add them as part of the genotype
                        # we don't necessarily know their zygosity,
                        # just that they are part of the genotype variant ids
                        # are from OMIM, so prefix as such we assume that the
                        # sequence alts will be defined in OMIM not here
                        # TODO sort the variant_id list, if the omim prefix is
                        # the same, then assume it's the locus make a hashmap
                        # of the omim id to variant id list;
                        # then build the genotype hashmap is also useful for
                        # removing the "genes" from the list of "phenotypes"

                        # will hold gene/locus id to variant list
                        omim_map = {}

                        locus_num = None
                        for v in variant_id.split(';'):
                            # handle omim-style and odd var ids
                            # like 610661.p.R401X
                            m = re.match(r'(\d+)\.+(.*)', v.strip())
                            if m is not None and len(m.groups()) == 2:
                                (locus_num, var_num) = m.groups()

                            if locus_num is not None \
                                    and locus_num not in omim_map:
                                omim_map[locus_num] = [var_num]
                            else:
                                omim_map[locus_num] += [var_num]

                        for o in omim_map:
                            # gene_id = 'OMIM:' + o  # TODO unused
                            vslc_id = \
                                '_' + '-'.join(
                                    [o + '.' + a for a in omim_map.get(o)])
                            if self.nobnodes:
                                vslc_id = ':'+vslc_id
                            vslc_label = vl
                            # we don't really know the zygosity of
                            # the alleles at all.
                            # so the vslcs are just a pot of them
                            gu.addIndividualToGraph(
                                g, vslc_id, vslc_label,
                                geno.genoparts[
                                    'variant_single_locus_complement'])
                            for v in omim_map.get(o):
                                # this is actually a sequence alt
                                allele1_id = 'OMIM:'+o+'.'+v
                                geno.addSequenceAlteration(allele1_id, None)

                                # assume that the sa -> var_loc -> gene
                                # is taken care of in OMIM
                                geno.addPartsToVSLC(
                                    vslc_id, allele1_id, None,
                                    geno.zygosity['indeterminate'],
                                    geno.object_properties[
                                        'has_alternate_part'])

                            if vslc_id != gvc_id:
                                geno.addVSLCtoParent(vslc_id, gvc_id)

                    if affected == 'unaffected':
                        # let's just say that this person is wildtype
                        gu.addType(g, patient_id, geno.genoparts['wildtype'])
                    elif genotype_id is None:
                        # make an anonymous genotype id
                        genotype_id = '_geno'+catalog_id.strip()
                        if self.nobnodes:
                            genotype_id = ':'+genotype_id

                    # add the gvc
                    if gvc_id is not None:
                        gu.addIndividualToGraph(
                            g, gvc_id, gvc_label,
                            geno.genoparts['genomic_variation_complement'])

                        # add the gvc to the genotype
                        if genotype_id is not None:
                            if affected == 'unaffected':
                                rel = \
                                    geno.object_properties[
                                        'has_reference_part']
                            else:
                                rel = \
                                    geno.object_properties[
                                        'has_alternate_part']
                            geno.addParts(gvc_id, genotype_id, rel)
                        if karyotype_id is not None \
                                and self._is_normal_karyotype(karyotype):
                            if gvc_label is not None and gvc_label != '':
                                genotype_label = \
                                    '; '.join((gvc_label, karyotype))
                            else:
                                genotype_label = karyotype
                            if genotype_id is None:
                                genotype_id = karyotype_id
                            else:
                                geno.addParts(
                                    karyotype_id, genotype_id,
                                    geno.object_properties[
                                        'has_reference_part'])
                        else:
                            genotype_label = gvc_label
                            # use the catalog id as the background
                        genotype_label += ' ['+catalog_id.strip()+']'

                    if genotype_id is not None and gvc_id is not None:
                        # only add the genotype if it has some parts
                        geno.addGenotype(
                            genotype_id, genotype_label,
                            geno.genoparts['intrinsic_genotype'])
                        geno.addTaxon(taxon, genotype_id)
                        # add that the patient has the genotype
                        # TODO check if the genotype belongs to
                        # the cell line or to the patient
                        gu.addTriple(
                            g, patient_id,
                            geno.properties['has_genotype'], genotype_id)
                    else:
                        geno.addTaxon(taxon, patient_id)

                    # TODO: Add sex/gender  (as part of the karyotype?)

                    # #############    DEAL WITH THE DISEASES   #############

                    # we associate the disease to the patient
                    if affected == 'affected':
                        if omim_number != '':
                            for d in omim_number.split(';'):
                                if d is not None and d != '':
                                    # if the omim number is in omim_map,
                                    # then it is a gene not a pheno
                                    if d not in omim_map:
                                        disease_id = 'OMIM:'+d.strip()
                                        # assume the label is taken care of
                                        gu.addClassToGraph(g, disease_id, None)

                                        # add the association:
                                        #   the patient has the disease
                                        assoc = G2PAssoc(
                                            self.name, patient_id, disease_id)
                                        assoc.add_association_to_graph(g)

                                        # this line is a model of this disease
                                        # TODO abstract out model into
                                        # it's own association class?
                                        gu.addTriple(
                                            g, cell_line_id,
                                            gu.properties['model_of'],
                                            disease_id)
                                    else:
                                        logger.info(
                                            'removing %s from disease list ' +
                                            'since it is a gene', d)

                    # #############    ADD PUBLICATIONS   #############

                    if pubmed_ids != '':
                        for s in pubmed_ids.split(';'):
                            pubmed_id = 'PMID:'+s.strip()
                            ref = Reference(pubmed_id)
                            ref.setType(Reference.ref_types['journal_article'])
                            ref.addRefToGraph(g)
                            gu.addTriple(
                                g, pubmed_id, gu.properties['mentions'],
                                cell_line_id)

                    if not self.testMode \
                            and (limit is not None and line_counter > limit):
                        break

            Assoc(self.name).load_all_properties(g)

        return
예제 #4
0
    def _process_phenotype_data(self, limit):
        """
        NOTE: If a Strain carries more than one mutation,
        then each Mutation description,
        i.e., the set: (
            Mutation Type - Chromosome - Gene Symbol -
            Gene Name - Allele Symbol - Allele Name)
        will require a separate line.

        Note that MMRRC curates phenotypes to alleles,
        even though they distribute only one file with the
        phenotypes appearing to be associated with a strain.

        So, here we process the allele-to-phenotype relationships separately
        from the strain-to-allele relationships.

        :param limit:
        :return:

        """
        if self.testMode:
            g = self.testgraph
        else:
            g = self.graph

        line_counter = 0
        gu = GraphUtils(curie_map.get())
        fname = '/'.join((self.rawdir, self.files['catalog']['file']))

        self.strain_hash = {}
        self.id_label_hash = {}
        genes_with_no_ids = set()
        stem_cell_class = 'CL:0000034'
        mouse_taxon = 'NCBITaxon:10090'
        geno = Genotype(g)
        with open(fname, 'r', encoding="utf8") as csvfile:
            filereader = csv.reader(csvfile, delimiter=',', quotechar='\"')
            for row in filereader:
                line_counter += 1
                # skip the first 3 lines which are header, etc.
                if line_counter < 4:
                    continue

                (strain_id, strain_label, strain_type_symbol, strain_state,
                 mgi_allele_id, mgi_allele_symbol, mgi_allele_name,
                 mutation_type, chrom, mgi_gene_id, mgi_gene_symbol,
                 mgi_gene_name, sds_url, accepted_date, mp_ids, pubmed_nums,
                 research_areas) = row

                if self.testMode and (strain_id not in self.test_ids):
                    continue

                # strip off stuff after the dash -
                # is the holding center important?
                # MMRRC:00001-UNC --> MMRRC:00001
                strain_id = re.sub(r'-\w+$', '', strain_id)

                self.id_label_hash[strain_id] = strain_label

                # get the variant or gene to save for later building of
                # the genotype
                if strain_id not in self.strain_hash:
                    self.strain_hash[strain_id] = {'variants': set(),
                                                   'genes': set()}

                # clean up the bad one
                if mgi_allele_id == 'multiple mutation':
                    logger.error("Erroneous gene id: %s", mgi_allele_id)
                    mgi_allele_id = ''

                if mgi_allele_id != '':
                    self.strain_hash[strain_id]['variants'].add(mgi_allele_id)
                    self.id_label_hash[mgi_allele_id] = mgi_allele_symbol

                    # use the following if needing to add the
                    # sequence alteration types
                    # var_type =
                    #   self._get_variant_type_from_abbrev(mutation_type)
                    # make a sequence alteration for this variant locus,
                    # and link the variation type to it
                    # sa_id = '_'+re.sub(r':','',mgi_allele_id)+'SA'
                    # if self.nobnodes:
                    #     sa_id = ':'+sa_id
                    # gu.addIndividualToGraph(g, sa_id, None, var_type)
                    # geno.addSequenceAlterationToVariantLocus(sa_id,
                    #                                          mgi_allele_id)

                # scrub out any spaces
                mgi_gene_id = re.sub(r'\s+', '', mgi_gene_id)
                if mgi_gene_id.strip() != '':
                    if re.match(r'Gene\s*ID:', mgi_gene_id, re.I):
                        mgi_gene_id = re.sub(r'Gene\s*ID:\s*', 'NCBIGene:',
                                             mgi_gene_id)
                    elif not re.match(r'MGI', mgi_gene_id):
                        logger.info("Gene id not recognized: %s", mgi_gene_id)
                        if re.match(r'\d+$', mgi_gene_id):
                            # assume that if it's all numbers, then it's MGI
                            mgi_gene_id = 'MGI:'+str(mgi_gene_id)
                            logger.info("Assuming numerics are MGI.")
                    self.strain_hash[strain_id]['genes'].add(mgi_gene_id)
                    self.id_label_hash[mgi_gene_id] = mgi_gene_symbol

                # catch some errors -
                # some things have gene labels, but no identifiers - report
                if mgi_gene_symbol.strip() != '' and mgi_gene_id == '':
                    logger.error(
                        "Gene label with no identifier for strain %s: %s",
                        strain_id, mgi_gene_symbol)
                    genes_with_no_ids.add(mgi_gene_symbol.strip())
                    # make a temp id for genes that aren't identified
                    # tmp_gene_id = '_'+mgi_gene_symbol
                    # self.id_label_hash[tmp_gene_id] = mgi_gene_symbol
                    # self.strain_hash[strain_id]['genes'].add(tmp_gene_id)

                # split apart the mp ids
                # ataxia [MP:0001393] ,hypoactivity [MP:0001402] ...
                # mp_ids are now a comma delimited list
                # with MP terms in brackets
                phenotype_ids = []
                if mp_ids != '':
                    for i in re.split(r',', mp_ids):
                        i = i.strip()
                        mps = re.search(r'\[(.*)\]', i)
                        if mps is not None:
                            mp_id = mps.group(1).strip()
                            phenotype_ids.append(mp_id)

                # pubmed ids are space delimited
                pubmed_ids = []
                if pubmed_nums.strip() != '':
                    for i in re.split(r'\s+', pubmed_nums):
                        pmid = 'PMID:'+i.strip()
                        pubmed_ids.append(pmid)
                        r = Reference(pmid,
                                      Reference.ref_types['journal_article'])
                        r.addRefToGraph(g)

                # https://www.mmrrc.org/catalog/sds.php?mmrrc_id=00001
                # is a good example of 4 genotype parts

                gu.addClassToGraph(g, mouse_taxon, None)
                if research_areas.strip() == '':
                    research_areas = None
                else:
                    research_areas = 'Research Areas: '+research_areas
                strain_type = mouse_taxon
                if strain_state == 'ES':
                    strain_type = stem_cell_class
                gu.addIndividualToGraph(
                    g, strain_id, strain_label, strain_type,
                    research_areas)  # an inst of mouse??
                gu.makeLeader(g, strain_id)

                # phenotypes are associated with the alleles
                for pid in phenotype_ids:
                    # assume the phenotype label is in the ontology
                    gu.addClassToGraph(g, pid, None)
                    if mgi_allele_id is not None and mgi_allele_id != '':
                        assoc = G2PAssoc(self.name, mgi_allele_id, pid,
                                         gu.object_properties['has_phenotype'])
                        for p in pubmed_ids:
                            assoc.add_source(p)
                        assoc.add_association_to_graph(g)
                    else:
                        logger.info("Phenotypes and no allele for %s",
                                    strain_id)

                if not self.testMode and (
                        limit is not None and line_counter > limit):
                    break

            # now that we've collected all of the variant information, build it
            # we don't know their zygosities
            for s in self.strain_hash:
                h = self.strain_hash.get(s)
                variants = h['variants']
                genes = h['genes']
                vl_set = set()
                # make variant loci for each gene
                if len(variants) > 0:
                    for v in variants:
                        vl_id = v
                        vl_symbol = self.id_label_hash[vl_id]
                        geno.addAllele(vl_id, vl_symbol,
                                       geno.genoparts['variant_locus'])
                        vl_set.add(vl_id)
                        if len(variants) == 1 and len(genes) == 1:
                            for gene in genes:
                                geno.addAlleleOfGene(vl_id, gene)
                        else:
                            geno.addAllele(vl_id, vl_symbol)
                else:  # len(vars) == 0
                    # it's just anonymous variants in some gene
                    for gene in genes:
                        vl_id = '_'+gene+'-VL'
                        vl_id = re.sub(r':', '', vl_id)
                        if self.nobnodes:
                            vl_id = ':'+vl_id
                        vl_symbol = self.id_label_hash[gene]+'<?>'
                        self.id_label_hash[vl_id] = vl_symbol
                        geno.addAllele(vl_id, vl_symbol,
                                       geno.genoparts['variant_locus'])
                        geno.addGene(gene, self.id_label_hash[gene])
                        geno.addAlleleOfGene(vl_id, gene)
                        vl_set.add(vl_id)

                # make the vslcs
                vl_list = sorted(vl_set)
                vslc_list = []
                for vl in vl_list:
                    # for unknown zygosity
                    vslc_id = '_'+re.sub(r'^_', '', vl)+'U'
                    vslc_id = re.sub(r':', '', vslc_id)
                    if self.nobnodes:
                        vslc_id = ':' + vslc_id
                    vslc_label = self.id_label_hash[vl] + '/?'
                    self.id_label_hash[vslc_id] = vslc_label
                    vslc_list.append(vslc_id)
                    geno.addPartsToVSLC(
                        vslc_id, vl, None, geno.zygosity['indeterminate'],
                        geno.object_properties['has_alternate_part'], None)
                    gu.addIndividualToGraph(
                        g, vslc_id, vslc_label,
                        geno.genoparts['variant_single_locus_complement'])
                if len(vslc_list) > 0:
                    if len(vslc_list) > 1:
                        gvc_id = '-'.join(vslc_list)
                        gvc_id = re.sub(r':', '', gvc_id)
                        if self.nobnodes:
                            gvc_id = ':'+gvc_id
                        gvc_label = \
                            '; '.join(self.id_label_hash[v] for v in vslc_list)
                        gu.addIndividualToGraph(
                            g, gvc_id, gvc_label,
                            geno.genoparts['genomic_variation_complement'])
                        for vslc_id in vslc_list:
                            geno.addVSLCtoParent(vslc_id, gvc_id)
                    else:
                        # the GVC == VSLC, so don't have to make an extra piece
                        gvc_id = vslc_list.pop()
                        gvc_label = self.id_label_hash[gvc_id]

                    genotype_label = gvc_label + ' [n.s.]'
                    bkgd_id = \
                        '_' + re.sub(r':', '', '-'.join(
                            (geno.genoparts['unspecified_genomic_background'],
                             s)))
                    genotype_id = '-'.join((gvc_id, bkgd_id))
                    if self.nobnodes:
                        bkgd_id = ':'+bkgd_id
                    geno.addTaxon(mouse_taxon, bkgd_id)
                    geno.addGenomicBackground(
                        bkgd_id, 'unspecified ('+s+')',
                        geno.genoparts['unspecified_genomic_background'],
                        "A placeholder for the " +
                        "unspecified genetic background for "+s)
                    geno.addGenomicBackgroundToGenotype(
                        bkgd_id, genotype_id,
                        geno.genoparts['unspecified_genomic_background'])
                    geno.addParts(
                        gvc_id, genotype_id,
                        geno.object_properties['has_alternate_part'])
                    geno.addGenotype(genotype_id, genotype_label)
                    gu.addTriple(
                        g, s, geno.object_properties['has_genotype'],
                        genotype_id)
                else:
                    # logger.debug(
                    #   "Strain %s is not making a proper genotype.", s)
                    pass

            gu.loadProperties(
                g, G2PAssoc.object_properties, G2PAssoc.OBJECTPROP)
            gu.loadProperties(
                g, G2PAssoc.datatype_properties, G2PAssoc.DATAPROP)
            gu.loadProperties(
                g, G2PAssoc.annotation_properties, G2PAssoc.ANNOTPROP)
            gu.loadAllProperties(g)

            logger.warning(
                "The following gene symbols did not list identifiers: %s",
                str(sorted(list(genes_with_no_ids))))

        return
예제 #5
0
파일: UDP.py 프로젝트: TomConlin/dipper
    def _parse_patient_variants(self, file):
        """
        :param file: file handler
        :return:
        """
        patient_var_map = self._convert_variant_file_to_dict(file)
        gene_coordinate_map = self._parse_gene_coordinates(
            self.map_files['gene_coord_map'])
        rs_map = self._parse_rs_map_file(self.map_files['dbsnp_map'])

        genotype = Genotype(self.graph)
        model = Model(self.graph)

        self._add_variant_gene_relationship(patient_var_map, gene_coordinate_map)

        for patient in patient_var_map:
            patient_curie = ':{0}'.format(patient)
            # make intrinsic genotype for each patient
            intrinsic_geno_bnode = self.make_id(
                "{0}-intrinsic-genotype".format(patient), "_")
            genotype_label = "{0} genotype".format(patient)
            genotype.addGenotype(
                intrinsic_geno_bnode, genotype_label,
                model.globaltt['intrinsic_genotype'])

            self.graph.addTriple(
                patient_curie, model.globaltt['has_genotype'], intrinsic_geno_bnode)
            for variant_id, variant in patient_var_map[patient].items():
                build = variant['build']
                chromosome = variant['chromosome']
                position = variant['position']
                reference_allele = variant['reference_allele']
                variant_allele = variant['variant_allele']
                genes_of_interest = variant['genes_of_interest']
                rs_id = variant['rs_id']

                variant_label = ''
                variant_bnode = self.make_id("{0}".format(variant_id), "_")

                # maybe should have these look like the elif statements below
                if position and reference_allele and variant_allele:
                    variant_label = self._build_variant_label(
                        build, chromosome, position, reference_allele,
                        variant_allele, genes_of_interest)
                elif not position and reference_allele and variant_allele \
                        and len(genes_of_interest) == 1:

                    variant_label = self._build_variant_label(
                        build, chromosome, position, reference_allele, variant_allele,
                        genes_of_interest)
                elif position and (not reference_allele or not variant_allele) \
                        and len(genes_of_interest) == 1:

                    variant_label = "{0}{1}({2}):g.{3}".format(
                        build, chromosome, genes_of_interest[0], position)
                elif len(genes_of_interest) == 1:
                    variant_label = 'variant of interest in {0} gene of patient' \
                        ' {1}'.format(genes_of_interest[0], patient)
                else:
                    variant_label = 'variant of interest in patient {0}'.format(patient)

                genotype.addSequenceAlteration(variant_bnode, None)
                # check if it we have built the label
                # in _add_variant_gene_relationship()
                labels = self.graph.objects(
                    BNode(re.sub(r'^_:', '', variant_bnode, 1)), RDFS['label'])

                label_list = list(labels)

                if len(label_list) == 0:
                    model.addLabel(variant_bnode, variant_label)

                self.graph.addTriple(
                    variant_bnode, self.globaltt['in taxon'],
                    self.globaltt['H**o sapiens'])
                self.graph.addTriple(
                    intrinsic_geno_bnode, self.globaltt['has_variant_part'],
                    variant_bnode)
                if rs_id:
                    dbsnp_curie = 'dbSNP:{0}'.format(rs_id)
                    model.addSameIndividual(variant_bnode, dbsnp_curie)

        self._add_variant_sameas_relationships(patient_var_map, rs_map)
        return
예제 #6
0
    def _process_phenotype_data(self, limit):
        """
        NOTE: If a Strain carries more than one mutation,
        then each Mutation description,
        i.e., the set: (
            Mutation Type - Chromosome - Gene Symbol -
            Gene Name - Allele Symbol - Allele Name)
        will require a separate line.

        Note that MMRRC curates phenotypes to alleles,
        even though they distribute only one file with the
        phenotypes appearing to be associated with a strain.

        So, here we process the allele-to-phenotype relationships separately
        from the strain-to-allele relationships.

        :param limit:
        :return:

        """

        src_key = 'catalog'
        if self.test_mode:
            graph = self.testgraph
        else:
            graph = self.graph
        model = Model(graph)
        fname = '/'.join((self.rawdir, self.files[src_key]['file']))

        self.strain_hash = {}
        self.id_label_hash = {}
        genes_with_no_ids = set()
        stem_cell_class = self.globaltt['stem cell']
        mouse_taxon = self.globaltt['Mus musculus']
        geno = Genotype(graph)
        with open(fname, 'r', encoding="utf8") as csvfile:
            reader = csv.reader(csvfile, delimiter=',', quotechar='\"')
            # First line is header not date/version info. This changed recently,
            # apparently as of Sep 2019. Also, 3rd line is no longer blank.
            row = [x.strip() for x in next(reader)]  # messy messy
            col = self.files['catalog']['columns']
            strain_missing_allele = []  # to count the ones w/insufficent info
            if not self.check_fileheader(col, row):
                pass

            for row in reader:
                strain_id = row[col.index('STRAIN/STOCK_ID')].strip()
                strain_label = row[col.index('STRAIN/STOCK_DESIGNATION')]
                # strain_type_symbol = row[col.index('STRAIN_TYPE')]
                strain_state = row[col.index('STATE')]
                mgi_allele_id = row[col.index(
                    'MGI_ALLELE_ACCESSION_ID')].strip()
                mgi_allele_symbol = row[col.index('ALLELE_SYMBOL')]
                # mgi_allele_name = row[col.index('ALLELE_NAME')]
                # mutation_type = row[col.index('MUTATION_TYPE')]
                # chrom = row[col.index('CHROMOSOME')]
                mgi_gene_id = row[col.index('MGI_GENE_ACCESSION_ID')].strip()
                mgi_gene_symbol = row[col.index('GENE_SYMBOL')].strip()
                mgi_gene_name = row[col.index('GENE_NAME')]
                # sds_url = row[col.index('SDS_URL')]
                # accepted_date = row[col.index('ACCEPTED_DATE')]
                mpt_ids = row[col.index('MPT_IDS')].strip()
                pubmed_nums = row[col.index('PUBMED_IDS')].strip()
                research_areas = row[col.index('RESEARCH_AREAS')].strip()

                if self.test_mode and (strain_id not in self.test_ids) \
                        or mgi_gene_name == 'withdrawn':
                    continue

                # strip off stuff after the dash -
                # is the holding center important?
                # MMRRC:00001-UNC --> MMRRC:00001
                strain_id = re.sub(r'-\w+$', '', strain_id)

                self.id_label_hash[strain_id] = strain_label

                # get the variant or gene to save for later building of
                # the genotype
                if strain_id not in self.strain_hash:
                    self.strain_hash[strain_id] = {
                        'variants': set(),
                        'genes': set()
                    }

                # flag bad ones
                if mgi_allele_id[:4] != 'MGI:' and mgi_allele_id != '':
                    LOG.error("Erroneous MGI allele id: %s", mgi_allele_id)
                    if mgi_allele_id[:3] == 'MG:':
                        mgi_allele_id = 'MGI:' + mgi_allele_id[3:]
                    else:
                        mgi_allele_id = ''

                if mgi_allele_id != '':
                    self.strain_hash[strain_id]['variants'].add(mgi_allele_id)
                    self.id_label_hash[mgi_allele_id] = mgi_allele_symbol

                    # use the following if needing to add the sequence alteration types
                    # var_type = self.localtt[mutation_type]
                    # make a sequence alteration for this variant locus,
                    # and link the variation type to it
                    # sa_id = '_'+re.sub(r':','',mgi_allele_id)+'SA'
                    # if self.nobnodes:
                    #     sa_id = ':'+sa_id
                    # gu.addIndividualToGraph(g, sa_id, None, var_type)
                    # geno.addSequenceAlterationToVariantLocus(sa_id, mgi_allele_id)

                # scrub out any spaces, fix known issues
                mgi_gene_id = re.sub(r'\s+', '', mgi_gene_id)
                if mgi_gene_id == 'NULL':
                    mgi_gene_id = ''
                elif mgi_gene_id[:7] == 'GeneID:':
                    mgi_gene_id = 'NCBIGene:' + mgi_gene_id[7:]

                if mgi_gene_id != '':
                    try:
                        [curie, localid] = mgi_gene_id.split(':')
                    except ValueError as verror:
                        LOG.warning(
                            "Problem parsing mgi_gene_id %s from file %s: %s",
                            mgi_gene_id, fname, verror)
                    if curie not in ['MGI', 'NCBIGene']:
                        LOG.info("MGI Gene id not recognized: %s", mgi_gene_id)
                    self.strain_hash[strain_id]['genes'].add(mgi_gene_id)
                    self.id_label_hash[mgi_gene_id] = mgi_gene_symbol

                # catch some errors - too many. report summary at the end
                # some things have gene labels, but no identifiers - report
                if mgi_gene_symbol != '' and mgi_gene_id == '':
                    # LOG.error(
                    #    "Gene label with no MGI identifier for strain %s: %s",
                    #    strain_id, mgi_gene_symbol)
                    genes_with_no_ids.add(mgi_gene_symbol)
                    # make a temp id for genes that aren't identified ... err wow.
                    # tmp_gene_id = '_' + mgi_gene_symbol
                    # self.id_label_hash[tmp_gene_id.strip()] = mgi_gene_symbol
                    # self.strain_hash[strain_id]['genes'].add(tmp_gene_id)

                # split apart the mp ids
                # ataxia [MP:0001393] ,hypoactivity [MP:0001402] ...
                # mpt_ids are a comma delimited list
                # labels with MP terms following in brackets
                phenotype_ids = []
                if mpt_ids != '':
                    for lb_mp in mpt_ids.split(r','):
                        lb_mp = lb_mp.strip()
                        if lb_mp[-1:] == ']' and lb_mp[-12:-8] == '[MP:':
                            phenotype_ids.append(lb_mp[-11:-2])

                # pubmed ids are space delimited
                pubmed_ids = []
                if pubmed_nums != '':
                    for pm_num in re.split(r'\s+', pubmed_nums):
                        pmid = 'PMID:' + pm_num.strip()
                        pubmed_ids.append(pmid)
                        ref = Reference(graph, pmid,
                                        self.globaltt['journal article'])
                        ref.addRefToGraph()

                # https://www.mmrrc.org/catalog/sds.php?mmrrc_id=00001
                # is a good example of 4 genotype parts

                model.addClassToGraph(mouse_taxon, None)
                if research_areas == '':
                    research_areas = None
                else:
                    research_areas = 'Research Areas: ' + research_areas
                strain_type = mouse_taxon
                if strain_state == 'ES':
                    strain_type = stem_cell_class
                model.addIndividualToGraph(  # an inst of mouse??
                    strain_id, strain_label, strain_type, research_areas)
                model.makeLeader(strain_id)

                # phenotypes are associated with the alleles
                for pid in phenotype_ids:
                    # assume the phenotype label is in some ontology
                    model.addClassToGraph(pid, None)
                    if mgi_allele_id is not None and mgi_allele_id != '':
                        assoc = G2PAssoc(graph, self.name, mgi_allele_id, pid,
                                         self.globaltt['has phenotype'])
                        for p in pubmed_ids:
                            assoc.add_source(p)
                        assoc.add_association_to_graph()
                    else:
                        # too chatty here. report aggregate
                        # LOG.info("Phenotypes and no allele for %s", strain_id)
                        strain_missing_allele.append(strain_id)

                if not self.test_mode and (limit is not None
                                           and reader.line_num > limit):
                    break

            # report misses
            if strain_missing_allele:
                LOG.info("Phenotypes and no allele for %i strains",
                         len(strain_missing_allele))

            # now that we've collected all of the variant information, build it
            # we don't know their zygosities
            for s in self.strain_hash:
                h = self.strain_hash.get(s)
                variants = h['variants']
                genes = h['genes']
                vl_set = set()
                # make variant loci for each gene
                if variants:
                    for var in variants:
                        vl_id = var.strip()
                        vl_symbol = self.id_label_hash[vl_id]
                        geno.addAllele(vl_id, vl_symbol,
                                       self.globaltt['variant_locus'])
                        vl_set.add(vl_id)
                        if len(variants) == 1 and len(genes) == 1:
                            for gene in genes:
                                geno.addAlleleOfGene(vl_id, gene)
                        else:
                            geno.addAllele(vl_id, vl_symbol)
                else:  # len(vars) == 0
                    # it's just anonymous variants in some gene
                    for gene in genes:
                        vl_id = '_:' + re.sub(r':', '', gene) + '-VL'
                        vl_symbol = self.id_label_hash[gene] + '<?>'
                        self.id_label_hash[vl_id] = vl_symbol
                        geno.addAllele(vl_id, vl_symbol,
                                       self.globaltt['variant_locus'])
                        geno.addGene(gene, self.id_label_hash[gene])
                        geno.addAlleleOfGene(vl_id, gene)
                        vl_set.add(vl_id)

                # make the vslcs
                vl_list = sorted(vl_set)
                vslc_list = []
                for vl in vl_list:
                    # for unknown zygosity
                    vslc_id = re.sub(r'^_', '', vl) + 'U'
                    vslc_id = re.sub(r':', '', vslc_id)
                    vslc_id = '_:' + vslc_id
                    vslc_label = self.id_label_hash[vl] + '/?'
                    self.id_label_hash[vslc_id] = vslc_label
                    vslc_list.append(vslc_id)
                    geno.addPartsToVSLC(vslc_id, vl, None,
                                        self.globaltt['indeterminate'],
                                        self.globaltt['has_variant_part'],
                                        None)
                    model.addIndividualToGraph(
                        vslc_id, vslc_label,
                        self.globaltt['variant single locus complement'])
                if vslc_list:
                    if len(vslc_list) > 1:
                        gvc_id = '-'.join(vslc_list)
                        gvc_id = re.sub(r'_|:', '', gvc_id)
                        gvc_id = '_:' + gvc_id
                        gvc_label = '; '.join(self.id_label_hash[v]
                                              for v in vslc_list)
                        model.addIndividualToGraph(
                            gvc_id, gvc_label,
                            self.globaltt['genomic_variation_complement'])
                        for vslc_id in vslc_list:
                            geno.addVSLCtoParent(vslc_id, gvc_id)
                    else:
                        # the GVC == VSLC, so don't have to make an extra piece
                        gvc_id = vslc_list.pop()
                        gvc_label = self.id_label_hash[gvc_id]

                    genotype_label = gvc_label + ' [n.s.]'
                    bkgd_id = re.sub(
                        r':', '', '-'.join(
                            (self.globaltt['unspecified_genomic_background'],
                             s)))
                    genotype_id = '-'.join((gvc_id, bkgd_id))
                    bkgd_id = '_:' + bkgd_id
                    geno.addTaxon(mouse_taxon, bkgd_id)
                    geno.addGenomicBackground(
                        bkgd_id, 'unspecified (' + s + ')',
                        self.globaltt['unspecified_genomic_background'],
                        "A placeholder for the unspecified genetic background for "
                        + s)
                    geno.addGenomicBackgroundToGenotype(
                        bkgd_id, genotype_id,
                        self.globaltt['unspecified_genomic_background'])
                    geno.addParts(gvc_id, genotype_id,
                                  self.globaltt['has_variant_part'])
                    geno.addGenotype(genotype_id, genotype_label)
                    graph.addTriple(s, self.globaltt['has_genotype'],
                                    genotype_id)
                else:
                    # LOG.debug(
                    #   "Strain %s is not making a proper genotype.", s)
                    pass

            LOG.warning(
                "The following gene symbols did not list identifiers: %s",
                str(sorted(list(genes_with_no_ids))))
            LOG.error('%i symbols given are missing their gene identifiers',
                      len(genes_with_no_ids))

        return
예제 #7
0
파일: MPD.py 프로젝트: DoctorBud/dipper
    def _add_g2p_assoc(self, g, strain_id, sex, assay_id, phenotypes, comment):
        """
        Create an association between a sex-specific strain id
        and each of the phenotypes.
        Here, we create a genotype from the strain,
        and a sex-specific genotype.
        Each of those genotypes are created as anonymous nodes.

        The evidence code is hardcoded to be:
            ECO:experimental_phenotypic_evidence.

        :param g:
        :param strain_id:
        :param sex:
        :param assay_id:
        :param phenotypes: a list of phenotypes to association with the strain
        :param comment:
        :return:

        """
        geno = Genotype(g)
        model = Model(g)
        eco_id = "ECO:0000059"  # experimental_phenotypic_evidence
        strain_label = self.idlabel_hash.get(strain_id)
        # strain genotype
        genotype_id = '_'+'-'.join((re.sub(r':', '', strain_id), 'genotype'))
        genotype_label = '[' + strain_label + ']'

        sex_specific_genotype_id = '_'+'-'.join((re.sub(r':', '', strain_id),
                                                 sex, 'genotype'))
        if strain_label is not None:
            sex_specific_genotype_label = strain_label + ' (' + sex + ')'
        else:
            sex_specific_genotype_label = strain_id + '(' + sex + ')'

        genotype_type = Genotype.genoparts['sex_qualified_genotype']
        if sex == 'm':
            genotype_type = Genotype.genoparts['male_genotype']
        elif sex == 'f':
            genotype_type = Genotype.genoparts['female_genotype']

        # add the genotype to strain connection
        geno.addGenotype(
            genotype_id, genotype_label,
            Genotype.genoparts['genomic_background'])
        g.addTriple(
            strain_id, Genotype.object_properties['has_genotype'], genotype_id)

        geno.addGenotype(
            sex_specific_genotype_id, sex_specific_genotype_label,
            genotype_type)

        # add the strain as the background for the genotype
        g.addTriple(
            sex_specific_genotype_id,
            Genotype.object_properties['has_sex_agnostic_genotype_part'],
            genotype_id)

        # #############    BUILD THE G2P ASSOC    #############
        # TODO add more provenance info when that model is completed

        if phenotypes is not None:
            for phenotype_id in phenotypes:
                assoc = G2PAssoc(
                    g, self.name, sex_specific_genotype_id, phenotype_id)
                assoc.add_evidence(assay_id)
                assoc.add_evidence(eco_id)
                assoc.add_association_to_graph()
                assoc_id = assoc.get_association_id()
                model.addComment(assoc_id, comment)

        return
예제 #8
0
class GenotypeTestCase(unittest.TestCase):
    def setUp(self):
        self.graph = RDFGraph()
        self.curie_map = curie_map.get()
        self.genotype = Genotype(self.graph)
        self.cutil = CurieUtil(self.curie_map)
        self.test_cat_pred = self.cutil.get_uri(blv.terms['category'])
        self.test_cat_genotype_category = self.cutil.get_uri(
            blv.terms['Genotype'])
        self.test_cat_background_category = self.cutil.get_uri(
            blv.terms['PopulationOfIndividualOrganisms'])

    def tearDown(self):
        self.genotype = None

    def test_addGenotype(self):
        cutil = CurieUtil(self.curie_map)
        gid = 'MGI:5515892'
        label = \
            'Pmp22<Tr-2J>/Pmp22<+> [C57BL/6J-Pmp22<Tr-2J>/GrsrJ]'
        self.genotype.addGenotype(gid, label)
        self.assertTrue((URIRef(cutil.get_uri(gid)), RDFS['label'],
                         Literal(label)) in self.genotype.graph)

    def test_addGenomicBackgroundToGenotype_adds_genotype(self):
        """
         test that addGenomicBackgroundToGenotype() correctly assigns
         subject/object category
         """
        genotype_id = "GENO:0000002"
        background_id = "GENO:0000002"  # no idea what a good example background ID is
        self.genotype.addGenomicBackgroundToGenotype(
            background_id=background_id, genotype_id=genotype_id)

        geno_triples = list(
            self.graph.triples((URIRef(self.cutil.get_uri(genotype_id)),
                                URIRef(self.test_cat_pred),
                                URIRef(self.test_cat_genotype_category))))

    def test_addGenomicBackgroundToGenotype_adds_categories(self):
        """
         test that addGenomicBackgroundToGenotype() correctly assigns
         subject/object category
         """
        genotype_id = "GENO:0000002"
        background_id = "GENO:0000002"  # no idea what a good example background ID is
        self.genotype.addGenomicBackgroundToGenotype(
            background_id=background_id, genotype_id=genotype_id)

        geno_triples = list(
            self.graph.triples((URIRef(self.cutil.get_uri(genotype_id)),
                                URIRef(self.test_cat_pred),
                                URIRef(self.test_cat_genotype_category))))
        self.assertEqual(
            len(geno_triples), 1,
            "addTriples() didn't make exactly 1 genotype category triple")
        self.assertEqual(
            geno_triples[0][2], URIRef(self.test_cat_genotype_category),
            "addTriples() didn't assign the right genotype category")

        background_triples = list(
            self.graph.triples((URIRef(self.cutil.get_uri(background_id)),
                                URIRef(self.test_cat_pred),
                                URIRef(self.test_cat_background_category))))
        self.assertEqual(
            len(background_triples), 1,
            "addTriples() didn't make exactly 1 genotype category triple")
        self.assertEqual(
            background_triples[0][2],
            URIRef(self.test_cat_background_category),
            "addTriples() didn't assign the right background category")

        # does not compile
        #    def test_addParts(self):
        #        """
        #        """
        #        if part_relationship is None:
        #            part_relationship = self.globaltt['has_part']
        #        # Fail loudly if parent or child identifiers are None
        #        if parent_id is None:
        #            raise TypeError('Attempt to pass None as parent')
        #        elif part_id is None:
        #            raise TypeError('Attempt to pass None as child')
        #        elif part_relationship is None:
        #            part_relationship = self.globaltt['has_part']
        #
        #        self.graph.addTriple(parent_id, part_relationship, part_id,
        #                             subject_category=subject_category,
        #                             object_category=object_category)

        return
예제 #9
0
    def _process_data(self, raw, limit=None):
        LOG.info("Processing Data from %s", raw)

        if self.test_mode:
            graph = self.testgraph
        else:
            graph = self.graph
        model = Model(graph)
        geno = Genotype(graph)

        # Add the taxon as a class
        taxon_id = self.globaltt['Mus musculus']
        model.addClassToGraph(taxon_id, None)

        # with open(raw, 'r', encoding="utf8") as csvfile:
        col = self.files['all']['columns']
        with gzip.open(raw, 'rt') as csvfile:
            reader = csv.reader(csvfile, delimiter=',', quotechar='\"')
            row = next(reader)  # presumed header
            if not self.check_fileheader(col, row):
                pass

            for row in reader:
                # | head -1 | tr ',' '\n' | sed "s|\(.*\)|# \1 = row[col.index('\1')]|g"
                marker_accession_id = row[col.index('marker_accession_id')].strip()
                marker_symbol = row[col.index('marker_symbol')].strip()
                phenotyping_center = row[col.index('phenotyping_center')].strip()
                colony_raw = row[col.index('colony_id')].strip()
                sex = row[col.index('sex')].strip()
                zygosity = row[col.index('zygosity')].strip()
                allele_accession_id = row[col.index('allele_accession_id')].strip()
                allele_symbol = row[col.index('allele_symbol')].strip()
                # allele_name = row[col.index('allele_name')]
                strain_accession_id = row[col.index('strain_accession_id')].strip()
                strain_name = row[col.index('strain_name')].strip()
                # project_name = row[col.index('project_name')]
                project_fullname = row[col.index('project_fullname')].strip()
                pipeline_name = row[col.index('pipeline_name')].strip()
                pipeline_stable_id = row[col.index('pipeline_stable_id')].strip()
                procedure_stable_id = row[col.index('procedure_stable_id')].strip()
                procedure_name = row[col.index('procedure_name')].strip()
                parameter_stable_id = row[col.index('parameter_stable_id')].strip()
                parameter_name = row[col.index('parameter_name')].strip()
                # top_level_mp_term_id = row[col.index('top_level_mp_term_id')]
                # top_level_mp_term_name = row[col.index('top_level_mp_term_name')]
                mp_term_id = row[col.index('mp_term_id')].strip()
                mp_term_name = row[col.index('mp_term_name')].strip()
                p_value = row[col.index('p_value')].strip()
                percentage_change = row[col.index('percentage_change')].strip()
                effect_size = row[col.index('effect_size')].strip()
                statistical_method = row[col.index('statistical_method')].strip()
                resource_name = row[col.index('resource_name')].strip()

                if self.test_mode and marker_accession_id not in self.gene_ids:
                    continue

                # ##### cleanup some of the identifiers ######
                zygosity = zygosity.strip()
                zygosity_id = self.resolve(zygosity)
                if zygosity_id == zygosity:
                    LOG.warning(
                        "Zygosity '%s' unmapped. detting to indeterminate", zygosity)
                    zygosity_id = self.globaltt['indeterminate']

                # colony ids sometimes have <> in them, spaces,
                # or other non-alphanumerics and break our system;
                # replace these with underscores
                colony_id = '_:' + re.sub(r'\W+', '_', colony_raw)

                if not re.match(r'MGI', allele_accession_id):
                    allele_accession_id = '_:IMPC-'+re.sub(
                        r':', '', allele_accession_id)

                if re.search(r'EUROCURATE', strain_accession_id):
                    # the eurocurate links don't resolve at IMPC
                    # TODO blank nodes do not maintain identifiers
                    strain_accession_id = '_:' + strain_accession_id

                elif not re.match(r'MGI', strain_accession_id):
                    LOG.info(
                        "Found a strange strain accession...%s", strain_accession_id)
                    strain_accession_id = 'IMPC:'+strain_accession_id

                ######################
                # first, add the marker and variant to the graph as with MGI,
                # the allele is the variant locus.  IF the marker is not known,
                # we will call it a sequence alteration.  otherwise,
                # we will create a BNode for the sequence alteration.
                sequence_alteration_id = variant_locus_id = None
                variant_locus_name = sequence_alteration_name = None

                # extract out what's within the <> to get the symbol
                if re.match(r'.*<.*>', allele_symbol):
                    sequence_alteration_name = re.match(
                        r'.*<(.*)>', allele_symbol)
                    if sequence_alteration_name is not None:
                        sequence_alteration_name = sequence_alteration_name.group(1)
                else:
                    sequence_alteration_name = allele_symbol

                if marker_accession_id is not None and marker_accession_id == '':
                    LOG.warning("Marker unspecified on row %d", reader.line_num)
                    marker_accession_id = None

                if marker_accession_id is not None:
                    variant_locus_id = allele_accession_id
                    variant_locus_name = allele_symbol
                    variant_locus_type = self.globaltt['variant_locus']
                    geno.addGene(
                        marker_accession_id, marker_symbol, self.globaltt['gene'])

                    geno.addAllele(
                        variant_locus_id, variant_locus_name, variant_locus_type, None)
                    geno.addAlleleOfGene(variant_locus_id, marker_accession_id)

                    # TAG bnode
                    sequence_alteration_id = '_:seqalt' + re.sub(
                        r':', '', allele_accession_id)
                    geno.addSequenceAlterationToVariantLocus(
                        sequence_alteration_id, variant_locus_id)

                else:
                    sequence_alteration_id = allele_accession_id

                # IMPC contains targeted mutations with either gene traps,
                # knockouts, insertion/intragenic deletions.
                # but I don't really know what the SeqAlt is here,
                # so I don't add it.
                geno.addSequenceAlteration(
                    sequence_alteration_id, sequence_alteration_name)

                # #############    BUILD THE COLONY    #############
                # First, let's describe the colony that the animals come from
                # The Colony ID refers to the ES cell clone
                #   used to generate a mouse strain.
                # Terry sez: we use this clone ID to track
                #   ES cell -> mouse strain -> mouse phenotyping.
                # The same ES clone maybe used at multiple centers,
                # so we have to concatenate the two to have a unique ID.
                # some useful reading about generating mice from ES cells:
                # http://ki.mit.edu/sbc/escell/services/details

                # here, we'll make a genotype
                # that derives from an ES cell with a given allele.
                # the strain is not really attached to the colony.

                # the colony/clone is reflective of the allele,  with unknown zygosity

                stem_cell_class = self.globaltt['embryonic stem cell line']

                if colony_id is None:
                    print(colony_raw, stem_cell_class, "\nline:\t", reader.line_num)
                model.addIndividualToGraph(colony_id, colony_raw, stem_cell_class)

                # vslc of the colony has unknown zygosity
                # note that we will define the allele
                # (and it's relationship to the marker, etc.) later
                # FIXME is it really necessary to create this vslc
                # when we always know it's unknown zygosity?
                vslc_colony = '_:'+re.sub(
                    r':', '', allele_accession_id + self.globaltt['indeterminate'])
                vslc_colony_label = allele_symbol + '/<?>'
                # for ease of reading, we make the colony genotype variables.
                # in the future, it might be desired to keep the vslcs
                colony_genotype_id = vslc_colony
                colony_genotype_label = vslc_colony_label
                geno.addGenotype(colony_genotype_id, colony_genotype_label)
                geno.addParts(
                    allele_accession_id, colony_genotype_id,
                    self.globaltt['has_variant_part'])

                geno.addPartsToVSLC(
                    vslc_colony, allele_accession_id, None,
                    self.globaltt['indeterminate'], self.globaltt['has_variant_part'])
                graph.addTriple(
                    colony_id, self.globaltt['has_genotype'], colony_genotype_id)

                # ##########    BUILD THE ANNOTATED GENOTYPE    ##########
                # now, we'll build the genotype of the individual that derives
                # from the colony/clone genotype that is attached to
                # phenotype = colony_id + strain + zygosity + sex
                # (and is derived from a colony)

                # this is a sex-agnostic genotype
                genotype_id = self.make_id(
                    (colony_id + phenotyping_center + zygosity + strain_accession_id))
                geno.addSequenceDerivesFrom(genotype_id, colony_id)

                # build the VSLC of the sex-agnostic genotype
                # based on the zygosity
                allele1_id = allele_accession_id
                allele2_id = allele2_rel = None
                allele1_label = allele_symbol
                allele2_label = '<?>'
                # Making VSLC labels from the various parts,
                # can change later if desired.
                if zygosity == 'heterozygote':
                    allele2_label = re.sub(r'<.*', '<+>', allele1_label)
                    allele2_id = None
                elif zygosity == 'homozygote':
                    allele2_label = allele1_label
                    allele2_id = allele1_id
                    allele2_rel = self.globaltt['has_variant_part']
                elif zygosity == 'hemizygote':
                    allele2_label = re.sub(r'<.*', '<0>', allele1_label)
                    allele2_id = None
                elif zygosity == 'not_applicable':
                    allele2_label = re.sub(r'<.*', '<?>', allele1_label)
                    allele2_id = None
                else:
                    LOG.warning("found unknown zygosity %s", zygosity)
                    break
                vslc_name = '/'.join((allele1_label, allele2_label))

                # Add the VSLC
                vslc_id = '-'.join(
                    (marker_accession_id, allele_accession_id, zygosity))
                vslc_id = re.sub(r':', '', vslc_id)
                vslc_id = '_:'+vslc_id
                model.addIndividualToGraph(
                    vslc_id, vslc_name,
                    self.globaltt['variant single locus complement'])
                geno.addPartsToVSLC(
                    vslc_id, allele1_id, allele2_id, zygosity_id,
                    self.globaltt['has_variant_part'], allele2_rel)

                # add vslc to genotype
                geno.addVSLCtoParent(vslc_id, genotype_id)

                # note that the vslc is also the gvc
                model.addType(vslc_id, self.globaltt['genomic_variation_complement'])

                # Add the genomic background
                # create the genomic background id and name
                if strain_accession_id != '':
                    genomic_background_id = strain_accession_id
                else:
                    genomic_background_id = None

                genotype_name = vslc_name
                if genomic_background_id is not None:
                    geno.addGenotype(
                        genomic_background_id, strain_name,
                        self.globaltt['genomic_background'])

                    # make a phenotyping-center-specific strain
                    # to use as the background
                    pheno_center_strain_label = strain_name + '-' + phenotyping_center \
                        + '-' + colony_raw
                    pheno_center_strain_id = '-'.join((
                        re.sub(r':', '', genomic_background_id),
                        re.sub(r'\s', '_', phenotyping_center),
                        re.sub(r'\W+', '', colony_raw)))
                    if not re.match(r'^_', pheno_center_strain_id):
                        # Tag bnode
                        pheno_center_strain_id = '_:' + pheno_center_strain_id

                    geno.addGenotype(
                        pheno_center_strain_id, pheno_center_strain_label,
                        self.globaltt['genomic_background'])
                    geno.addSequenceDerivesFrom(
                        pheno_center_strain_id, genomic_background_id)

                    # Making genotype labels from the various parts,
                    # can change later if desired.
                    # since the genotype is reflective of the place
                    # it got made, should put that in to disambiguate
                    genotype_name = \
                        genotype_name + ' [' + pheno_center_strain_label + ']'
                    geno.addGenomicBackgroundToGenotype(
                        pheno_center_strain_id, genotype_id)
                    geno.addTaxon(taxon_id, pheno_center_strain_id)
                # this is redundant, but i'll keep in in for now
                geno.addSequenceDerivesFrom(genotype_id, colony_id)
                geno.addGenotype(genotype_id, genotype_name)

                # Make the sex-qualified genotype,
                # which is what the phenotype is associated with
                sex_qualified_genotype_id = \
                    self.make_id((
                        colony_id + phenotyping_center + zygosity +
                        strain_accession_id + sex))
                sex_qualified_genotype_label = genotype_name + ' (' + sex + ')'

                sq_type_id = self.resolve(sex, False)

                if sq_type_id == sex:
                    sq_type_id = self.globaltt['intrinsic_genotype']
                    LOG.warning(
                        "Unknown sex qualifier %s, adding as intrinsic_genotype",
                        sex)

                geno.addGenotype(
                    sex_qualified_genotype_id, sex_qualified_genotype_label, sq_type_id)
                geno.addParts(
                    genotype_id, sex_qualified_genotype_id,
                    self.globaltt['has_variant_part'])

                if genomic_background_id is not None and genomic_background_id != '':
                    # Add the taxon to the genomic_background_id
                    geno.addTaxon(taxon_id, genomic_background_id)
                else:
                    # add it as the genomic background
                    geno.addTaxon(taxon_id, genotype_id)

                # #############    BUILD THE G2P ASSOC    #############
                # from an old email dated July 23 2014:
                # Phenotypes associations are made to
                # imits colony_id+center+zygosity+gender

                # sometimes phenotype ids are missing.  (about 711 early 2020)
                if mp_term_id is None or mp_term_id == '':
                    LOG.warning(
                        "No phenotype id specified for row %d", reader.line_num)
                    continue
                # hard coded ECO code
                eco_id = self.globaltt['mutant phenotype evidence']

                # the association comes as a result of a g2p from
                # a procedure in a pipeline at a center and parameter tested

                assoc = G2PAssoc(
                    graph, self.name, sex_qualified_genotype_id, mp_term_id)
                assoc.add_evidence(eco_id)
                # assoc.set_score(float(p_value))

                # TODO add evidence instance using
                # pipeline_stable_id +
                # procedure_stable_id +
                # parameter_stable_id

                assoc.add_association_to_graph()
                assoc_id = assoc.get_association_id()

                model._addSexSpecificity(assoc_id, self.resolve(sex))

                # add a free-text description
                try:
                    description = ' '.join((
                        mp_term_name, 'phenotype determined by', phenotyping_center,
                        'in an', procedure_name, 'assay where', parameter_name.strip(),
                        'was measured with an effect_size of',
                        str(round(float(effect_size), 5)),
                        '(p =', "{:.4e}".format(float(p_value)), ').'))
                except ValueError:
                    description = ' '.join((
                        mp_term_name, 'phenotype determined by', phenotyping_center,
                        'in an', procedure_name, 'assay where', parameter_name.strip(),
                        'was measured with an effect_size of', str(effect_size),
                        '(p =', "{0}".format(p_value), ').'))

                study_bnode = self._add_study_provenance(
                    phenotyping_center, colony_raw, project_fullname, pipeline_name,
                    pipeline_stable_id, procedure_stable_id, procedure_name,
                    parameter_stable_id, parameter_name, statistical_method,
                    resource_name)

                evidence_line_bnode = self._add_evidence(
                    assoc_id, eco_id, p_value, percentage_change, effect_size,
                    study_bnode)

                self._add_assertion_provenance(assoc_id, evidence_line_bnode)

                model.addDescription(evidence_line_bnode, description)

                # resource_id = resource_name
                # assoc.addSource(graph, assoc_id, resource_id)

                if not self.test_mode and limit is not None and reader.line_num > limit:
                    break
예제 #10
0
파일: CGD.py 프로젝트: zzygyx9119/mckb
    def _add_variant_protein_variant_assoc_to_graph(self, row):
        """
        Generates relationships between variants and protein variants
        given a row of data
        :param iterable: row of data, see add_variant_info_to_graph()
                                      docstring for expected structure
        :return None
        """
        gu = GraphUtils(curie_map.get())
        geno = Genotype(self.graph)
        is_missense = False
        is_literal = True

        (variant_key, variant_label, amino_acid_variant, amino_acid_position,
         transcript_id, transcript_priority, protein_variant_type,
         functional_impact, stop_gain_loss, transcript_gene,
         protein_variant_source) = row[0:11]

        variant_id = self.make_cgd_id('variant{0}'.format(variant_key))

        transcript_curie = self._make_transcript_curie(transcript_id)
        uniprot_curie = self._make_uniprot_polypeptide_curie(transcript_id)
        ncbi_protein_curie = self._make_ncbi_polypeptide_curie(transcript_id)

        geno.addGenotype(variant_id, variant_label,
                         geno.genoparts['sequence_alteration'])

        # Make fake amino acid sequence in case we
        # can't get a CCDS to Uniprot and/or NCBI Protein mapping
        aa_seq_id = self.make_cgd_id('transcript{0}'.format(amino_acid_variant))

        # Add Transcript:
        geno.addTranscript(variant_id, transcript_curie, transcript_id,
                           geno.genoparts['transcript'])

        # Add polypeptide
        if ncbi_protein_curie is not None:
            geno.addPolypeptide(ncbi_protein_curie,
                                self.transcript_xrefs['RefSeq'][transcript_id],
                                transcript_curie)
            aa_seq_id = ncbi_protein_curie
        if uniprot_curie is not None:
            geno.addPolypeptide(uniprot_curie,
                                self.transcript_xrefs['UniProt'][transcript_id],
                                transcript_curie)
            # Overrides ncbi_protein_curie,
            # but we set them as equal individuals below
            aa_seq_id = uniprot_curie

        if ncbi_protein_curie is not None and uniprot_curie is not None:
            gu.addSameIndividual(self.graph, ncbi_protein_curie, uniprot_curie)
        else:
            aa_seq_id = self.make_cgd_id('transcript{0}'.format(amino_acid_variant))

        if protein_variant_type == 'nonsynonymous - missense' \
                or re.search(r'missense', variant_label):
            is_missense = True
            geno.addGenotype(variant_id, variant_label,
                             geno.genoparts['missense_variant'])

        # Get gene ID from gene map
        self._add_variant_gene_relationship(variant_id, transcript_gene)

        amino_acid_regex = re.compile(r'^p\.([A-Za-z]{1,3})(\d+)([A-Za-z]{1,3})$')

        if is_missense:
            match = re.match(amino_acid_regex, amino_acid_variant.rstrip())
        else:
            match = None

        if match is not None:
            ref_amino_acid = match.group(1)
            position = match.group(2)
            altered_amino_acid = match.group(3)
        else:
            logger.debug("Could not parse amino acid information"
                         " from {0} variant:"
                         " {1} type: {2}".format(amino_acid_variant,
                                                 variant_label,
                                                 protein_variant_type))

        # Add amino acid change to model
        if is_missense is True and match is not None:
            gu.addTriple(self.graph, variant_id,
                         geno.properties['reference_amino_acid'],
                         ref_amino_acid, is_literal)
            gu.addTriple(self.graph, variant_id,
                         geno.properties['results_in_amino_acid_change'],
                         altered_amino_acid, is_literal)

            aa_region_id = ":_{0}{1}{2}Region".format(position, position, aa_seq_id)
            self._add_feature_with_coords(variant_id, position,
                                          position, aa_seq_id, aa_region_id)

        return
예제 #11
0
    def _process_data(self, raw, limit=None):
        logger.info("Processing Data from %s", raw)
        gu = GraphUtils(curie_map.get())

        if self.testMode:
            g = self.testgraph
        else:
            g = self.graph

        geno = Genotype(g)
        line_counter = 0
        gu.loadAllProperties(g)
        gu.loadObjectProperties(g, geno.object_properties)

        # Add the taxon as a class
        taxon_id = 'NCBITaxon:10090'  # map to Mus musculus
        gu.addClassToGraph(g, taxon_id, None)

        # with open(raw, 'r', encoding="utf8") as csvfile:
        with gzip.open(raw, 'rt') as csvfile:
            filereader = csv.reader(csvfile, delimiter=',', quotechar='\"')
            next(filereader, None)  # skip the header row
            for row in filereader:
                line_counter += 1

                (marker_accession_id, marker_symbol, phenotyping_center,
                 colony, sex, zygosity, allele_accession_id, allele_symbol,
                 allele_name, strain_accession_id, strain_name, project_name,
                 project_fullname, pipeline_name, pipeline_stable_id,
                 procedure_stable_id, procedure_name, parameter_stable_id,
                 parameter_name, top_level_mp_term_id, top_level_mp_term_name,
                 mp_term_id, mp_term_name, p_value, percentage_change,
                 effect_size, statistical_method, resource_name) = row

                if self.testMode and marker_accession_id not in self.test_ids:
                    continue

                # ##### cleanup some of the identifiers ######
                zygosity_id = self._map_zygosity(zygosity)

                # colony ids sometimes have <> in them, spaces,
                # or other non-alphanumerics and break our system;
                # replace these with underscores
                colony_id = '_'+re.sub(r'\W+', '_', colony)
                if self.nobnodes:
                    colony_id = ':'+colony_id

                if not re.match(r'MGI', allele_accession_id):
                    allele_accession_id = \
                        '_IMPC-'+re.sub(r':', '', allele_accession_id)
                    if self.nobnodes:
                        allele_accession_id = ':'+allele_accession_id
                if re.search(r'EUROCURATE', strain_accession_id):
                    # the eurocurate links don't resolve at IMPC
                    strain_accession_id = '_'+strain_accession_id
                    if self.nobnodes:
                        strain_accession_id = ':'+strain_accession_id
                elif not re.match(r'MGI', strain_accession_id):
                    logger.info(
                        "Found a strange strain accession...%s",
                        strain_accession_id)
                    strain_accession_id = 'IMPC:'+strain_accession_id

                ######################
                # first, add the marker and variant to the graph as with MGI,
                # the allele is the variant locus.  IF the marker is not known,
                # we will call it a sequence alteration.  otherwise,
                # we will create a BNode for the sequence alteration.
                sequence_alteration_id = variant_locus_id = None
                variant_locus_name = sequence_alteration_name = None

                # extract out what's within the <> to get the symbol
                if re.match(r'.*<.*>', allele_symbol):
                    sequence_alteration_name = \
                        re.match(r'.*<(.*)>', allele_symbol).group(1)
                else:
                    sequence_alteration_name = allele_symbol

                if marker_accession_id is not None and \
                        marker_accession_id == '':
                    logger.warning(
                        "Marker unspecified on row %d", line_counter)
                    marker_accession_id = None

                if marker_accession_id is not None:
                    variant_locus_id = allele_accession_id
                    variant_locus_name = allele_symbol
                    variant_locus_type = geno.genoparts['variant_locus']
                    geno.addGene(marker_accession_id, marker_symbol,
                                 geno.genoparts['gene'])
                    geno.addAllele(variant_locus_id, variant_locus_name,
                                   variant_locus_type, None)
                    geno.addAlleleOfGene(variant_locus_id, marker_accession_id)

                    sequence_alteration_id = \
                        '_seqalt'+re.sub(r':', '', allele_accession_id)
                    if self.nobnodes:
                        sequence_alteration_id = ':'+sequence_alteration_id
                    geno.addSequenceAlterationToVariantLocus(
                        sequence_alteration_id, variant_locus_id)

                else:
                    sequence_alteration_id = allele_accession_id

                # IMPC contains targeted mutations with either gene traps,
                # knockouts, insertion/intragenic deletions.
                # but I don't really know what the SeqAlt is here,
                # so I don't add it.
                geno.addSequenceAlteration(sequence_alteration_id,
                                           sequence_alteration_name)

                # #############    BUILD THE COLONY    #############
                # First, let's describe the colony that the animals come from
                # The Colony ID refers to the ES cell clone
                #   used to generate a mouse strain.
                # Terry sez: we use this clone ID to track
                #   ES cell -> mouse strain -> mouse phenotyping.
                # The same ES clone maybe used at multiple centers,
                # so we have to concatenate the two to have a unique ID.
                # some useful reading about generating mice from ES cells:
                # http://ki.mit.edu/sbc/escell/services/details

                # here, we'll make a genotype
                # that derives from an ES cell with a given allele.
                # the strain is not really attached to the colony.

                # the colony/clone is reflective of the allele,
                # with unknown zygosity
                stem_cell_class = 'ERO:0002002'
                gu.addIndividualToGraph(g, colony_id, colony, stem_cell_class)

                # vslc of the colony has unknown zygosity
                # note that we will define the allele
                # (and it's relationship to the marker, etc.) later
                # FIXME is it really necessary to create this vslc
                # when we always know it's unknown zygosity?
                vslc_colony = \
                    '_'+allele_accession_id+geno.zygosity['indeterminate']
                vslc_colony = re.sub(r':', '', vslc_colony)
                if self.nobnodes:
                    vslc_colony = ':'+vslc_colony
                vslc_colony_label = allele_symbol+'/<?>'
                # for ease of reading, we make the colony genotype variables.
                # in the future, it might be desired to keep the vslcs
                colony_genotype_id = vslc_colony
                colony_genotype_label = vslc_colony_label
                geno.addGenotype(colony_genotype_id, colony_genotype_label)
                geno.addParts(allele_accession_id, colony_genotype_id,
                              geno.object_properties['has_alternate_part'])
                geno.addPartsToVSLC(
                    vslc_colony, allele_accession_id, None,
                    geno.zygosity['indeterminate'],
                    geno.object_properties['has_alternate_part'])
                gu.addTriple(
                    g, colony_id,
                    geno.object_properties['has_genotype'],
                    colony_genotype_id)

                # ##########    BUILD THE ANNOTATED GENOTYPE    ##########
                # now, we'll build the genotype of the individual that derives
                # from the colony/clone genotype that is attached to
                # phenotype = colony_id + strain + zygosity + sex
                # (and is derived from a colony)

                # this is a sex-agnostic genotype
                genotype_id = \
                    self.make_id(
                        (colony_id + phenotyping_center + zygosity +
                         strain_accession_id))
                geno.addSequenceDerivesFrom(genotype_id, colony_id)

                # build the VSLC of the sex-agnostic genotype
                # based on the zygosity
                allele1_id = allele_accession_id
                allele2_id = allele2_rel = None
                allele1_label = allele_symbol
                allele2_label = '<?>'
                # Making VSLC labels from the various parts,
                # can change later if desired.
                if zygosity == 'heterozygote':
                    allele2_label = re.sub(r'<.*', '<+>', allele1_label)
                    allele2_id = None
                elif zygosity == 'homozygote':
                    allele2_label = allele1_label
                    allele2_id = allele1_id
                    allele2_rel = geno.object_properties['has_alternate_part']
                elif zygosity == 'hemizygote':
                    allele2_label = re.sub(r'<.*', '<0>', allele1_label)
                    allele2_id = None
                elif zygosity == 'not_applicable':
                    allele2_label = re.sub(r'<.*', '<?>', allele1_label)
                    allele2_id = None
                else:
                    logger.warning("found unknown zygosity %s", zygosity)
                    break
                vslc_name = '/'.join((allele1_label, allele2_label))

                # Add the VSLC
                vslc_id = '_' + '-'.join((marker_accession_id,
                                          allele_accession_id, zygosity))
                vslc_id = re.sub(r':', '', vslc_id)
                if self.nobnodes:
                    vslc_id = ':'+vslc_id
                gu.addIndividualToGraph(
                    g, vslc_id, vslc_name,
                    geno.genoparts['variant_single_locus_complement'])
                geno.addPartsToVSLC(
                    vslc_id, allele1_id, allele2_id, zygosity_id,
                    geno.object_properties['has_alternate_part'],
                    allele2_rel)

                # add vslc to genotype
                geno.addVSLCtoParent(vslc_id, genotype_id)

                # note that the vslc is also the gvc
                gu.addType(
                    g, vslc_id,
                    Genotype.genoparts['genomic_variation_complement'])

                # Add the genomic background
                # create the genomic background id and name
                if strain_accession_id != '':
                    genomic_background_id = strain_accession_id
                else:
                    genomic_background_id = None

                genotype_name = vslc_name
                if genomic_background_id is not None:
                    geno.addGenotype(
                        genomic_background_id, strain_name,
                        geno.genoparts['genomic_background'])

                    # make a phenotyping-center-specific strain
                    # to use as the background
                    pheno_center_strain_label = \
                        strain_name + '/' + phenotyping_center
                    pheno_center_strain_id = \
                        '-'.join((re.sub(r':', '', genomic_background_id),
                                  re.sub(r'\s', '_', phenotyping_center)))
                    if not re.match(r'^_', pheno_center_strain_id):
                        pheno_center_strain_id = '_'+pheno_center_strain_id
                    if self.nobnodes:
                        pheno_center_strain_id = ':'+pheno_center_strain_id
                    geno.addGenotype(pheno_center_strain_id,
                                     pheno_center_strain_label,
                                     geno.genoparts['genomic_background'])
                    geno.addSequenceDerivesFrom(pheno_center_strain_id,
                                                genomic_background_id)

                    # Making genotype labels from the various parts,
                    # can change later if desired.
                    # since the genotype is reflective of the place
                    # it got made, should put that in to disambiguate
                    genotype_name = \
                        genotype_name+' ['+pheno_center_strain_label+']'
                    geno.addGenomicBackgroundToGenotype(
                        pheno_center_strain_id, genotype_id)
                    geno.addTaxon(pheno_center_strain_id, taxon_id)
                # this is redundant, but i'll keep in in for now
                geno.addSequenceDerivesFrom(genotype_id, colony_id)
                genotype_name += '['+colony+']'
                geno.addGenotype(genotype_id, genotype_name)

                # Make the sex-qualified genotype,
                # which is what the phenotype is associated with
                sex_qualified_genotype_id = \
                    self.make_id(
                        (colony_id + phenotyping_center + zygosity +
                         strain_accession_id+sex))
                sex_qualified_genotype_label = genotype_name+' ('+sex+')'
                if sex == 'male':
                    sq_type_id = geno.genoparts['male_genotype']
                elif sex == 'female':
                    sq_type_id = geno.genoparts['female_genotype']
                else:
                    sq_type_id = geno.genoparts['sex_qualified_genotype']

                geno.addGenotype(
                    sex_qualified_genotype_id,
                    sex_qualified_genotype_label, sq_type_id)
                geno.addParts(
                    genotype_id, sex_qualified_genotype_id,
                    geno.object_properties['has_alternate_part'])

                if genomic_background_id is not None and \
                        genomic_background_id != '':
                    # Add the taxon to the genomic_background_id
                    geno.addTaxon(taxon_id, genomic_background_id)
                else:
                    # add it as the genomic background
                    geno.addTaxon(taxon_id, genotype_id)

                # #############    BUILD THE G2P ASSOC    #############
                # from an old email dated July 23 2014:
                # Phenotypes associations are made to
                # imits colony_id+center+zygosity+gender

                phenotype_id = mp_term_id

                # it seems that sometimes phenotype ids are missing.
                # indicate here
                if phenotype_id is None or phenotype_id == '':
                    logger.warning(
                        "No phenotype id specified for row %d: %s",
                        line_counter, str(row))
                    continue
                # experimental_phenotypic_evidence This was used in ZFIN
                eco_id = "ECO:0000059"

                # the association comes as a result of a g2p from
                # a procedure in a pipeline at a center and parameter tested

                assoc = G2PAssoc(self.name, sex_qualified_genotype_id,
                                 phenotype_id)
                assoc.add_evidence(eco_id)
                # assoc.set_score(float(p_value))

                # TODO add evidence instance using
                # pipeline_stable_id +
                # procedure_stable_id +
                # parameter_stable_id

                assoc.add_association_to_graph(g)
                assoc_id = assoc.get_association_id()

                # add a free-text description
                description = \
                    ' '.join((mp_term_name, 'phenotype determined by',
                              phenotyping_center, 'in an',
                              procedure_name, 'assay where',
                              parameter_name.strip(),
                              'was measured with an effect_size of',
                              str(round(float(effect_size), 5)),
                              '(p =', "{:.4e}".format(float(p_value)), ').'))

                gu.addDescription(g, assoc_id, description)

                # TODO add provenance information
                # resource_id = resource_name
                # assoc.addSource(g, assoc_id, resource_id)

                if not self.testMode and \
                        limit is not None and line_counter > limit:
                    break

        gu.loadProperties(g, G2PAssoc.object_properties, gu.OBJPROP)
        gu.loadProperties(g, G2PAssoc.annotation_properties, gu.ANNOTPROP)
        gu.loadProperties(g, G2PAssoc.datatype_properties, gu.DATAPROP)

        return
예제 #12
0
파일: MMRRC.py 프로젝트: putmantime/dipper
    def _process_phenotype_data(self, limit):
        """
        NOTE: If a Strain carries more than one mutation,
        then each Mutation description,
        i.e., the set: (
            Mutation Type - Chromosome - Gene Symbol -
            Gene Name - Allele Symbol - Allele Name)
        will require a separate line.

        Note that MMRRC curates phenotypes to alleles,
        even though they distribute only one file with the
        phenotypes appearing to be associated with a strain.

        So, here we process the allele-to-phenotype relationships separately
        from the strain-to-allele relationships.

        :param limit:
        :return:

        """
        if self.testMode:
            g = self.testgraph
        else:
            g = self.graph
        model = Model(g)
        line_counter = 0
        fname = '/'.join((self.rawdir, self.files['catalog']['file']))

        self.strain_hash = {}
        self.id_label_hash = {}
        genes_with_no_ids = set()
        stem_cell_class = 'CL:0000034'
        mouse_taxon = 'NCBITaxon:10090'
        geno = Genotype(g)
        with open(fname, 'r', encoding="utf8") as csvfile:
            filereader = csv.reader(csvfile, delimiter=',', quotechar='\"')
            for row in filereader:
                line_counter += 1
                # skip the first 3 lines which are header, etc.
                if line_counter < 4:
                    continue

                (strain_id, strain_label, strain_type_symbol, strain_state,
                 mgi_allele_id, mgi_allele_symbol, mgi_allele_name,
                 mutation_type, chrom, mgi_gene_id, mgi_gene_symbol,
                 mgi_gene_name, sds_url, accepted_date, mp_ids, pubmed_nums,
                 research_areas) = row

                if self.testMode and (strain_id not in self.test_ids) \
                        or mgi_gene_name == 'withdrawn':
                    continue

                # strip off stuff after the dash -
                # is the holding center important?
                # MMRRC:00001-UNC --> MMRRC:00001
                strain_id = re.sub(r'-\w+$', '', strain_id)

                self.id_label_hash[strain_id] = strain_label

                # get the variant or gene to save for later building of
                # the genotype
                if strain_id not in self.strain_hash:
                    self.strain_hash[strain_id] = {
                        'variants': set(),
                        'genes': set()
                    }

                # clean up the bad one
                if mgi_allele_id == 'multiple mutation':
                    logger.error("Erroneous gene id: %s", mgi_allele_id)
                    mgi_allele_id = ''

                if mgi_allele_id != '':
                    self.strain_hash[strain_id]['variants'].add(mgi_allele_id)
                    self.id_label_hash[mgi_allele_id] = mgi_allele_symbol

                    # use the following if needing to add the
                    # sequence alteration types
                    # var_type =
                    #   self._get_variant_type_from_abbrev(mutation_type)
                    # make a sequence alteration for this variant locus,
                    # and link the variation type to it
                    # sa_id = '_'+re.sub(r':','',mgi_allele_id)+'SA'
                    # if self.nobnodes:
                    #     sa_id = ':'+sa_id
                    # gu.addIndividualToGraph(g, sa_id, None, var_type)
                    # geno.addSequenceAlterationToVariantLocus(sa_id,
                    #                                          mgi_allele_id)

                # scrub out any spaces
                mgi_gene_id = re.sub(r'\s+', '', mgi_gene_id)
                if mgi_gene_id.strip() != '':
                    if re.match(r'Gene\s*ID:', mgi_gene_id, re.I):
                        mgi_gene_id = re.sub(r'Gene\s*ID:\s*', 'NCBIGene:',
                                             mgi_gene_id)
                    elif not re.match(r'MGI', mgi_gene_id):
                        logger.info("Gene id not recognized: %s", mgi_gene_id)
                        if re.match(r'\d+$', mgi_gene_id):
                            # assume that if it's all numbers, then it's MGI
                            mgi_gene_id = 'MGI:' + str(mgi_gene_id)
                            logger.info("Assuming numerics are MGI.")
                    self.strain_hash[strain_id]['genes'].add(mgi_gene_id)
                    self.id_label_hash[mgi_gene_id] = mgi_gene_symbol

                # catch some errors -
                # some things have gene labels, but no identifiers - report
                if mgi_gene_symbol.strip() != '' and mgi_gene_id == '':
                    logger.error(
                        "Gene label with no identifier for strain %s: %s",
                        strain_id, mgi_gene_symbol)
                    genes_with_no_ids.add(mgi_gene_symbol.strip())
                    # make a temp id for genes that aren't identified
                    # tmp_gene_id = '_'+mgi_gene_symbol
                    # self.id_label_hash[tmp_gene_id] = mgi_gene_symbol
                    # self.strain_hash[strain_id]['genes'].add(tmp_gene_id)

                # split apart the mp ids
                # ataxia [MP:0001393] ,hypoactivity [MP:0001402] ...
                # mp_ids are now a comma delimited list
                # with MP terms in brackets
                phenotype_ids = []
                if mp_ids != '':
                    for i in re.split(r',', mp_ids):
                        i = i.strip()
                        mps = re.search(r'\[(.*)\]', i)
                        if mps is not None:
                            mp_id = mps.group(1).strip()
                            phenotype_ids.append(mp_id)

                # pubmed ids are space delimited
                pubmed_ids = []
                if pubmed_nums.strip() != '':
                    for i in re.split(r'\s+', pubmed_nums):
                        pmid = 'PMID:' + i.strip()
                        pubmed_ids.append(pmid)
                        r = Reference(g, pmid,
                                      Reference.ref_types['journal_article'])
                        r.addRefToGraph()

                # https://www.mmrrc.org/catalog/sds.php?mmrrc_id=00001
                # is a good example of 4 genotype parts

                model.addClassToGraph(mouse_taxon, None)
                if research_areas.strip() == '':
                    research_areas = None
                else:
                    research_areas = 'Research Areas: ' + research_areas
                strain_type = mouse_taxon
                if strain_state == 'ES':
                    strain_type = stem_cell_class
                model.addIndividualToGraph(
                    strain_id, strain_label, strain_type,
                    research_areas)  # an inst of mouse??
                model.makeLeader(strain_id)

                # phenotypes are associated with the alleles
                for pid in phenotype_ids:
                    # assume the phenotype label is in the ontology
                    model.addClassToGraph(pid, None)
                    if mgi_allele_id is not None and mgi_allele_id != '':
                        assoc = G2PAssoc(
                            g, self.name, mgi_allele_id, pid,
                            model.object_properties['has_phenotype'])
                        for p in pubmed_ids:
                            assoc.add_source(p)
                        assoc.add_association_to_graph()
                    else:
                        logger.info("Phenotypes and no allele for %s",
                                    strain_id)

                if not self.testMode and (limit is not None
                                          and line_counter > limit):
                    break

            # now that we've collected all of the variant information, build it
            # we don't know their zygosities
            for s in self.strain_hash:
                h = self.strain_hash.get(s)
                variants = h['variants']
                genes = h['genes']
                vl_set = set()
                # make variant loci for each gene
                if len(variants) > 0:
                    for v in variants:
                        vl_id = v
                        vl_symbol = self.id_label_hash[vl_id]
                        geno.addAllele(vl_id, vl_symbol,
                                       geno.genoparts['variant_locus'])
                        vl_set.add(vl_id)
                        if len(variants) == 1 and len(genes) == 1:
                            for gene in genes:
                                geno.addAlleleOfGene(vl_id, gene)
                        else:
                            geno.addAllele(vl_id, vl_symbol)
                else:  # len(vars) == 0
                    # it's just anonymous variants in some gene
                    for gene in genes:
                        vl_id = '_:' + re.sub(r':', '', gene) + '-VL'
                        vl_symbol = self.id_label_hash[gene] + '<?>'
                        self.id_label_hash[vl_id] = vl_symbol
                        geno.addAllele(vl_id, vl_symbol,
                                       geno.genoparts['variant_locus'])
                        geno.addGene(gene, self.id_label_hash[gene])
                        geno.addAlleleOfGene(vl_id, gene)
                        vl_set.add(vl_id)

                # make the vslcs
                vl_list = sorted(vl_set)
                vslc_list = []
                for vl in vl_list:
                    # for unknown zygosity
                    vslc_id = re.sub(r'^_', '', vl) + 'U'
                    vslc_id = re.sub(r':', '', vslc_id)
                    vslc_id = '_:' + vslc_id
                    vslc_label = self.id_label_hash[vl] + '/?'
                    self.id_label_hash[vslc_id] = vslc_label
                    vslc_list.append(vslc_id)
                    geno.addPartsToVSLC(
                        vslc_id, vl, None, geno.zygosity['indeterminate'],
                        geno.object_properties['has_alternate_part'], None)
                    model.addIndividualToGraph(
                        vslc_id, vslc_label,
                        geno.genoparts['variant_single_locus_complement'])
                if len(vslc_list) > 0:
                    if len(vslc_list) > 1:
                        gvc_id = '-'.join(vslc_list)
                        gvc_id = re.sub(r'_|:', '', gvc_id)
                        gvc_id = '_:' + gvc_id
                        gvc_label = \
                            '; '.join(self.id_label_hash[v] for v in vslc_list)
                        model.addIndividualToGraph(
                            gvc_id, gvc_label,
                            geno.genoparts['genomic_variation_complement'])
                        for vslc_id in vslc_list:
                            geno.addVSLCtoParent(vslc_id, gvc_id)
                    else:
                        # the GVC == VSLC, so don't have to make an extra piece
                        gvc_id = vslc_list.pop()
                        gvc_label = self.id_label_hash[gvc_id]

                    genotype_label = gvc_label + ' [n.s.]'
                    bkgd_id = \
                        re.sub(r':', '', '-'.join(
                            (geno.genoparts['unspecified_genomic_background'],
                             s)))
                    genotype_id = '-'.join((gvc_id, bkgd_id))
                    bkgd_id = '_:' + bkgd_id
                    geno.addTaxon(mouse_taxon, bkgd_id)
                    geno.addGenomicBackground(
                        bkgd_id, 'unspecified (' + s + ')',
                        geno.genoparts['unspecified_genomic_background'],
                        "A placeholder for the " +
                        "unspecified genetic background for " + s)
                    geno.addGenomicBackgroundToGenotype(
                        bkgd_id, genotype_id,
                        geno.genoparts['unspecified_genomic_background'])
                    geno.addParts(gvc_id, genotype_id,
                                  geno.object_properties['has_alternate_part'])
                    geno.addGenotype(genotype_id, genotype_label)
                    g.addTriple(s, geno.object_properties['has_genotype'],
                                genotype_id)
                else:
                    # logger.debug(
                    #   "Strain %s is not making a proper genotype.", s)
                    pass

            logger.warning(
                "The following gene symbols did not list identifiers: %s",
                str(sorted(list(genes_with_no_ids))))

        return
예제 #13
0
파일: IMPC.py 프로젝트: lwinfree/dipper
    def _process_data(self, raw, limit=None):
        logger.info("Processing Data from %s", raw)

        if self.testMode:
            g = self.testgraph
        else:
            g = self.graph
        model = Model(g)
        geno = Genotype(g)
        line_counter = 0

        impc_map = self.open_and_parse_yaml(self.map_files['impc_map'])
        impress_map = json.loads(
            self.fetch_from_url(
                self.map_files['impress_map']).read().decode('utf-8'))

        # Add the taxon as a class
        taxon_id = 'NCBITaxon:10090'  # map to Mus musculus
        model.addClassToGraph(taxon_id, None)

        # with open(raw, 'r', encoding="utf8") as csvfile:
        with gzip.open(raw, 'rt') as csvfile:
            filereader = csv.reader(csvfile, delimiter=',', quotechar='\"')
            next(filereader, None)  # skip the header row
            for row in filereader:
                line_counter += 1

                (marker_accession_id, marker_symbol, phenotyping_center,
                 colony, sex, zygosity, allele_accession_id, allele_symbol,
                 allele_name, strain_accession_id, strain_name, project_name,
                 project_fullname, pipeline_name, pipeline_stable_id,
                 procedure_stable_id, procedure_name, parameter_stable_id,
                 parameter_name, top_level_mp_term_id, top_level_mp_term_name,
                 mp_term_id, mp_term_name, p_value, percentage_change,
                 effect_size, statistical_method, resource_name) = row

                if self.testMode and marker_accession_id not in self.test_ids:
                    continue

                # ##### cleanup some of the identifiers ######
                zygosity_id = self._map_zygosity(zygosity)

                # colony ids sometimes have <> in them, spaces,
                # or other non-alphanumerics and break our system;
                # replace these with underscores
                colony_id = '_:' + re.sub(r'\W+', '_', colony)

                if not re.match(r'MGI', allele_accession_id):
                    allele_accession_id = \
                        '_:IMPC-'+re.sub(r':', '', allele_accession_id)

                if re.search(r'EUROCURATE', strain_accession_id):
                    # the eurocurate links don't resolve at IMPC
                    strain_accession_id = '_:' + strain_accession_id

                elif not re.match(r'MGI', strain_accession_id):
                    logger.info("Found a strange strain accession...%s",
                                strain_accession_id)
                    strain_accession_id = 'IMPC:' + strain_accession_id

                ######################
                # first, add the marker and variant to the graph as with MGI,
                # the allele is the variant locus.  IF the marker is not known,
                # we will call it a sequence alteration.  otherwise,
                # we will create a BNode for the sequence alteration.
                sequence_alteration_id = variant_locus_id = None
                variant_locus_name = sequence_alteration_name = None

                # extract out what's within the <> to get the symbol
                if re.match(r'.*<.*>', allele_symbol):
                    sequence_alteration_name = \
                        re.match(r'.*<(.*)>', allele_symbol).group(1)
                else:
                    sequence_alteration_name = allele_symbol

                if marker_accession_id is not None and \
                        marker_accession_id == '':
                    logger.warning("Marker unspecified on row %d",
                                   line_counter)
                    marker_accession_id = None

                if marker_accession_id is not None:
                    variant_locus_id = allele_accession_id
                    variant_locus_name = allele_symbol
                    variant_locus_type = geno.genoparts['variant_locus']
                    geno.addGene(marker_accession_id, marker_symbol,
                                 geno.genoparts['gene'])
                    geno.addAllele(variant_locus_id, variant_locus_name,
                                   variant_locus_type, None)
                    geno.addAlleleOfGene(variant_locus_id, marker_accession_id)

                    sequence_alteration_id = \
                        '_:seqalt'+re.sub(r':', '', allele_accession_id)
                    geno.addSequenceAlterationToVariantLocus(
                        sequence_alteration_id, variant_locus_id)

                else:
                    sequence_alteration_id = allele_accession_id

                # IMPC contains targeted mutations with either gene traps,
                # knockouts, insertion/intragenic deletions.
                # but I don't really know what the SeqAlt is here,
                # so I don't add it.
                geno.addSequenceAlteration(sequence_alteration_id,
                                           sequence_alteration_name)

                # #############    BUILD THE COLONY    #############
                # First, let's describe the colony that the animals come from
                # The Colony ID refers to the ES cell clone
                #   used to generate a mouse strain.
                # Terry sez: we use this clone ID to track
                #   ES cell -> mouse strain -> mouse phenotyping.
                # The same ES clone maybe used at multiple centers,
                # so we have to concatenate the two to have a unique ID.
                # some useful reading about generating mice from ES cells:
                # http://ki.mit.edu/sbc/escell/services/details

                # here, we'll make a genotype
                # that derives from an ES cell with a given allele.
                # the strain is not really attached to the colony.

                # the colony/clone is reflective of the allele,
                # with unknown zygosity
                stem_cell_class = 'ERO:0002002'
                model.addIndividualToGraph(colony_id, colony, stem_cell_class)

                # vslc of the colony has unknown zygosity
                # note that we will define the allele
                # (and it's relationship to the marker, etc.) later
                # FIXME is it really necessary to create this vslc
                # when we always know it's unknown zygosity?
                vslc_colony = \
                    '_:'+re.sub(r':', '', allele_accession_id+geno.zygosity['indeterminate'])
                vslc_colony_label = allele_symbol + '/<?>'
                # for ease of reading, we make the colony genotype variables.
                # in the future, it might be desired to keep the vslcs
                colony_genotype_id = vslc_colony
                colony_genotype_label = vslc_colony_label
                geno.addGenotype(colony_genotype_id, colony_genotype_label)
                geno.addParts(allele_accession_id, colony_genotype_id,
                              geno.object_properties['has_alternate_part'])
                geno.addPartsToVSLC(
                    vslc_colony, allele_accession_id, None,
                    geno.zygosity['indeterminate'],
                    geno.object_properties['has_alternate_part'])
                g.addTriple(colony_id, geno.object_properties['has_genotype'],
                            colony_genotype_id)

                # ##########    BUILD THE ANNOTATED GENOTYPE    ##########
                # now, we'll build the genotype of the individual that derives
                # from the colony/clone genotype that is attached to
                # phenotype = colony_id + strain + zygosity + sex
                # (and is derived from a colony)

                # this is a sex-agnostic genotype
                genotype_id = \
                    self.make_id(
                        (colony_id + phenotyping_center + zygosity +
                         strain_accession_id))
                geno.addSequenceDerivesFrom(genotype_id, colony_id)

                # build the VSLC of the sex-agnostic genotype
                # based on the zygosity
                allele1_id = allele_accession_id
                allele2_id = allele2_rel = None
                allele1_label = allele_symbol
                allele2_label = '<?>'
                # Making VSLC labels from the various parts,
                # can change later if desired.
                if zygosity == 'heterozygote':
                    allele2_label = re.sub(r'<.*', '<+>', allele1_label)
                    allele2_id = None
                elif zygosity == 'homozygote':
                    allele2_label = allele1_label
                    allele2_id = allele1_id
                    allele2_rel = geno.object_properties['has_alternate_part']
                elif zygosity == 'hemizygote':
                    allele2_label = re.sub(r'<.*', '<0>', allele1_label)
                    allele2_id = None
                elif zygosity == 'not_applicable':
                    allele2_label = re.sub(r'<.*', '<?>', allele1_label)
                    allele2_id = None
                else:
                    logger.warning("found unknown zygosity %s", zygosity)
                    break
                vslc_name = '/'.join((allele1_label, allele2_label))

                # Add the VSLC
                vslc_id = '-'.join(
                    (marker_accession_id, allele_accession_id, zygosity))
                vslc_id = re.sub(r':', '', vslc_id)
                vslc_id = '_:' + vslc_id
                model.addIndividualToGraph(
                    vslc_id, vslc_name,
                    geno.genoparts['variant_single_locus_complement'])
                geno.addPartsToVSLC(
                    vslc_id, allele1_id, allele2_id, zygosity_id,
                    geno.object_properties['has_alternate_part'], allele2_rel)

                # add vslc to genotype
                geno.addVSLCtoParent(vslc_id, genotype_id)

                # note that the vslc is also the gvc
                model.addType(
                    vslc_id,
                    Genotype.genoparts['genomic_variation_complement'])

                # Add the genomic background
                # create the genomic background id and name
                if strain_accession_id != '':
                    genomic_background_id = strain_accession_id
                else:
                    genomic_background_id = None

                genotype_name = vslc_name
                if genomic_background_id is not None:
                    geno.addGenotype(genomic_background_id, strain_name,
                                     geno.genoparts['genomic_background'])

                    # make a phenotyping-center-specific strain
                    # to use as the background
                    pheno_center_strain_label = \
                        strain_name + '-' + phenotyping_center + '-' + colony
                    pheno_center_strain_id = \
                        '-'.join((re.sub(r':', '', genomic_background_id),
                                  re.sub(r'\s', '_', phenotyping_center),
                                  re.sub(r'\W+', '', colony)))
                    if not re.match(r'^_', pheno_center_strain_id):
                        pheno_center_strain_id = '_:' + pheno_center_strain_id

                    geno.addGenotype(pheno_center_strain_id,
                                     pheno_center_strain_label,
                                     geno.genoparts['genomic_background'])
                    geno.addSequenceDerivesFrom(pheno_center_strain_id,
                                                genomic_background_id)

                    # Making genotype labels from the various parts,
                    # can change later if desired.
                    # since the genotype is reflective of the place
                    # it got made, should put that in to disambiguate
                    genotype_name = \
                        genotype_name+' ['+pheno_center_strain_label+']'
                    geno.addGenomicBackgroundToGenotype(
                        pheno_center_strain_id, genotype_id)
                    geno.addTaxon(taxon_id, pheno_center_strain_id)
                # this is redundant, but i'll keep in in for now
                geno.addSequenceDerivesFrom(genotype_id, colony_id)
                geno.addGenotype(genotype_id, genotype_name)

                # Make the sex-qualified genotype,
                # which is what the phenotype is associated with
                sex_qualified_genotype_id = \
                    self.make_id(
                        (colony_id + phenotyping_center + zygosity +
                         strain_accession_id+sex))
                sex_qualified_genotype_label = genotype_name + ' (' + sex + ')'
                if sex == 'male':
                    sq_type_id = geno.genoparts['male_genotype']
                elif sex == 'female':
                    sq_type_id = geno.genoparts['female_genotype']
                else:
                    sq_type_id = geno.genoparts['sex_qualified_genotype']

                geno.addGenotype(sex_qualified_genotype_id,
                                 sex_qualified_genotype_label, sq_type_id)
                geno.addParts(genotype_id, sex_qualified_genotype_id,
                              geno.object_properties['has_alternate_part'])

                if genomic_background_id is not None and \
                        genomic_background_id != '':
                    # Add the taxon to the genomic_background_id
                    geno.addTaxon(taxon_id, genomic_background_id)
                else:
                    # add it as the genomic background
                    geno.addTaxon(taxon_id, genotype_id)

                # #############    BUILD THE G2P ASSOC    #############
                # from an old email dated July 23 2014:
                # Phenotypes associations are made to
                # imits colony_id+center+zygosity+gender

                phenotype_id = mp_term_id

                # it seems that sometimes phenotype ids are missing.
                # indicate here
                if phenotype_id is None or phenotype_id == '':
                    logger.warning("No phenotype id specified for row %d: %s",
                                   line_counter, str(row))
                    continue
                # hard coded ECO code
                eco_id = "ECO:0000015"

                # the association comes as a result of a g2p from
                # a procedure in a pipeline at a center and parameter tested

                assoc = G2PAssoc(g, self.name, sex_qualified_genotype_id,
                                 phenotype_id)
                assoc.add_evidence(eco_id)
                # assoc.set_score(float(p_value))

                # TODO add evidence instance using
                # pipeline_stable_id +
                # procedure_stable_id +
                # parameter_stable_id

                assoc.add_association_to_graph()
                assoc_id = assoc.get_association_id()

                # add a free-text description
                try:
                    description = \
                        ' '.join((mp_term_name, 'phenotype determined by',
                                  phenotyping_center, 'in an',
                                  procedure_name, 'assay where',
                                  parameter_name.strip(),
                                  'was measured with an effect_size of',
                                  str(round(float(effect_size), 5)),
                                  '(p =', "{:.4e}".format(float(p_value)), ').'))
                except ValueError:
                    description = \
                        ' '.join((mp_term_name, 'phenotype determined by',
                                  phenotyping_center, 'in an',
                                  procedure_name, 'assay where',
                                  parameter_name.strip(),
                                  'was measured with an effect_size of',
                                  str(effect_size),
                                  '(p =', "{0}".format(p_value), ').'))

                study_bnode = \
                    self._add_study_provenance(
                        impc_map, impress_map, phenotyping_center, colony,
                        project_fullname, pipeline_name, pipeline_stable_id,
                        procedure_stable_id, procedure_name,
                        parameter_stable_id, parameter_name,
                        statistical_method, resource_name)

                evidence_line_bnode = \
                    self._add_evidence(
                        assoc_id, eco_id, impc_map, p_value, percentage_change,
                        effect_size, study_bnode)

                self._add_assertion_provenance(assoc_id, evidence_line_bnode,
                                               impc_map)

                model.addDescription(evidence_line_bnode, description)

                # resource_id = resource_name
                # assoc.addSource(g, assoc_id, resource_id)

                if not self.testMode and \
                        limit is not None and line_counter > limit:
                    break

        return
예제 #14
0
파일: MMRRC.py 프로젝트: TomConlin/dipper
    def _process_phenotype_data(self, limit):
        """
        NOTE: If a Strain carries more than one mutation,
        then each Mutation description,
        i.e., the set: (
            Mutation Type - Chromosome - Gene Symbol -
            Gene Name - Allele Symbol - Allele Name)
        will require a separate line.

        Note that MMRRC curates phenotypes to alleles,
        even though they distribute only one file with the
        phenotypes appearing to be associated with a strain.

        So, here we process the allele-to-phenotype relationships separately
        from the strain-to-allele relationships.

        :param limit:
        :return:

        """

        src_key = 'catalog'
        if self.test_mode:
            graph = self.testgraph
        else:
            graph = self.graph
        model = Model(graph)
        fname = '/'.join((self.rawdir, self.files[src_key]['file']))

        self.strain_hash = {}
        self.id_label_hash = {}
        genes_with_no_ids = set()
        stem_cell_class = self.globaltt['stem cell']
        mouse_taxon = self.globaltt['Mus musculus']
        geno = Genotype(graph)
        with open(fname, 'r', encoding="utf8") as csvfile:
            reader = csv.reader(csvfile, delimiter=',', quotechar='\"')
            # This MMRRC catalog data file was generated on YYYY-MM-DD
            # insert or check date w/dataset
            line = next(reader)
            # gen_date = line[-10:]
            line = next(reader)
            col = self.files['catalog']['columns']
            if col != line:
                LOG.error(
                    '%s\nExpected Headers:\t%s\nRecived Headers:\t%s\n',
                    src_key, col, line)
                LOG.info(set(col) - set(line))

            line = next(reader)
            if line != []:
                LOG.warning('Expected third line to be blank. got "%s" instead', line)

            for row in reader:
                strain_id = row[col.index('STRAIN/STOCK_ID')].strip()
                strain_label = row[col.index('STRAIN/STOCK_DESIGNATION')]
                # strain_type_symbol = row[col.index('STRAIN_TYPE')]
                strain_state = row[col.index('STATE')]
                mgi_allele_id = row[col.index('MGI_ALLELE_ACCESSION_ID')].strip()
                mgi_allele_symbol = row[col.index('ALLELE_SYMBOL')]
                # mgi_allele_name = row[col.index('ALLELE_NAME')]
                # mutation_type = row[col.index('MUTATION_TYPE')]
                # chrom = row[col.index('CHROMOSOME')]
                mgi_gene_id = row[col.index('MGI_GENE_ACCESSION_ID')].strip()
                mgi_gene_symbol = row[col.index('GENE_SYMBOL')].strip()
                mgi_gene_name = row[col.index('GENE_NAME')]
                # sds_url = row[col.index('SDS_URL')]
                # accepted_date = row[col.index('ACCEPTED_DATE')]
                mpt_ids = row[col.index('MPT_IDS')].strip()
                pubmed_nums = row[col.index('PUBMED_IDS')].strip()
                research_areas = row[col.index('RESEARCH_AREAS')].strip()

                if self.test_mode and (strain_id not in self.test_ids) \
                        or mgi_gene_name == 'withdrawn':
                    continue

                # strip off stuff after the dash -
                # is the holding center important?
                # MMRRC:00001-UNC --> MMRRC:00001
                strain_id = re.sub(r'-\w+$', '', strain_id)

                self.id_label_hash[strain_id] = strain_label

                # get the variant or gene to save for later building of
                # the genotype
                if strain_id not in self.strain_hash:
                    self.strain_hash[strain_id] = {
                        'variants': set(), 'genes': set()}

                # flag bad ones
                if mgi_allele_id[:4] != 'MGI:' and mgi_allele_id != '':
                    LOG.error("Erroneous MGI allele id: %s", mgi_allele_id)
                    if mgi_allele_id[:3] == 'MG:':
                        mgi_allele_id = 'MGI:' + mgi_allele_id[3:]
                    else:
                        mgi_allele_id = ''

                if mgi_allele_id != '':
                    self.strain_hash[strain_id]['variants'].add(mgi_allele_id)
                    self.id_label_hash[mgi_allele_id] = mgi_allele_symbol

                    # use the following if needing to add the sequence alteration types
                    # var_type = self.localtt[mutation_type]
                    # make a sequence alteration for this variant locus,
                    # and link the variation type to it
                    # sa_id = '_'+re.sub(r':','',mgi_allele_id)+'SA'
                    # if self.nobnodes:
                    #     sa_id = ':'+sa_id
                    # gu.addIndividualToGraph(g, sa_id, None, var_type)
                    # geno.addSequenceAlterationToVariantLocus(sa_id, mgi_allele_id)

                # scrub out any spaces, fix known issues
                mgi_gene_id = re.sub(r'\s+', '', mgi_gene_id)
                if mgi_gene_id == 'NULL':
                    mgi_gene_id = ''
                elif mgi_gene_id[:7] == 'GeneID:':
                    mgi_gene_id = 'NCBIGene:' + mgi_gene_id[7:]

                if mgi_gene_id != '':
                    [curie, localid] = mgi_gene_id.split(':')
                    if curie not in ['MGI', 'NCBIGene']:
                        LOG.info("MGI Gene id not recognized: %s", mgi_gene_id)
                    self.strain_hash[strain_id]['genes'].add(mgi_gene_id)
                    self.id_label_hash[mgi_gene_id] = mgi_gene_symbol

                # catch some errors - too many. report summary at the end
                # some things have gene labels, but no identifiers - report
                if mgi_gene_symbol != '' and mgi_gene_id == '':
                    # LOG.error(
                    #    "Gene label with no MGI identifier for strain %s: %s",
                    #    strain_id, mgi_gene_symbol)
                    genes_with_no_ids.add(mgi_gene_symbol)
                    # make a temp id for genes that aren't identified ... err wow.
                    # tmp_gene_id = '_' + mgi_gene_symbol
                    # self.id_label_hash[tmp_gene_id.strip()] = mgi_gene_symbol
                    # self.strain_hash[strain_id]['genes'].add(tmp_gene_id)

                # split apart the mp ids
                # ataxia [MP:0001393] ,hypoactivity [MP:0001402] ...
                # mpt_ids are a comma delimited list
                # labels with MP terms following in brackets
                phenotype_ids = []
                if mpt_ids != '':
                    for lb_mp in mpt_ids.split(r','):
                        lb_mp = lb_mp.strip()
                        if lb_mp[-1:] == ']' and lb_mp[-12:-8] == '[MP:':
                            phenotype_ids.append(lb_mp[-11:-2])

                # pubmed ids are space delimited
                pubmed_ids = []
                if pubmed_nums != '':
                    for pm_num in re.split(r'\s+', pubmed_nums):
                        pmid = 'PMID:' + pm_num.strip()
                        pubmed_ids.append(pmid)
                        ref = Reference(graph, pmid, self.globaltt['journal article'])
                        ref.addRefToGraph()

                # https://www.mmrrc.org/catalog/sds.php?mmrrc_id=00001
                # is a good example of 4 genotype parts

                model.addClassToGraph(mouse_taxon, None)
                if research_areas == '':
                    research_areas = None
                else:
                    research_areas = 'Research Areas: ' + research_areas
                strain_type = mouse_taxon
                if strain_state == 'ES':
                    strain_type = stem_cell_class
                model.addIndividualToGraph(   # an inst of mouse??
                    strain_id, strain_label, strain_type, research_areas)
                model.makeLeader(strain_id)

                # phenotypes are associated with the alleles
                for pid in phenotype_ids:
                    # assume the phenotype label is in some ontology
                    model.addClassToGraph(pid, None)
                    if mgi_allele_id is not None and mgi_allele_id != '':
                        assoc = G2PAssoc(
                            graph, self.name, mgi_allele_id, pid,
                            self.globaltt['has phenotype'])
                        for p in pubmed_ids:
                            assoc.add_source(p)
                        assoc.add_association_to_graph()
                    else:
                        LOG.info("Phenotypes and no allele for %s", strain_id)

                if not self.test_mode and (
                        limit is not None and reader.line_num > limit):
                    break

            # now that we've collected all of the variant information, build it
            # we don't know their zygosities
            for s in self.strain_hash:
                h = self.strain_hash.get(s)
                variants = h['variants']
                genes = h['genes']
                vl_set = set()
                # make variant loci for each gene
                if len(variants) > 0:
                    for var in variants:
                        vl_id = var.strip()
                        vl_symbol = self.id_label_hash[vl_id]
                        geno.addAllele(
                            vl_id, vl_symbol, self.globaltt['variant_locus'])
                        vl_set.add(vl_id)
                        if len(variants) == 1 and len(genes) == 1:
                            for gene in genes:
                                geno.addAlleleOfGene(vl_id, gene)
                        else:
                            geno.addAllele(vl_id, vl_symbol)
                else:  # len(vars) == 0
                    # it's just anonymous variants in some gene
                    for gene in genes:
                        vl_id = '_:' + re.sub(r':', '', gene) + '-VL'
                        vl_symbol = self.id_label_hash[gene]+'<?>'
                        self.id_label_hash[vl_id] = vl_symbol
                        geno.addAllele(
                            vl_id, vl_symbol, self.globaltt['variant_locus'])
                        geno.addGene(gene, self.id_label_hash[gene])
                        geno.addAlleleOfGene(vl_id, gene)
                        vl_set.add(vl_id)

                # make the vslcs
                vl_list = sorted(vl_set)
                vslc_list = []
                for vl in vl_list:
                    # for unknown zygosity
                    vslc_id = re.sub(r'^_', '', vl)+'U'
                    vslc_id = re.sub(r':', '', vslc_id)
                    vslc_id = '_:' + vslc_id
                    vslc_label = self.id_label_hash[vl] + '/?'
                    self.id_label_hash[vslc_id] = vslc_label
                    vslc_list.append(vslc_id)
                    geno.addPartsToVSLC(
                        vslc_id, vl, None, self.globaltt['indeterminate'],
                        self.globaltt['has_variant_part'], None)
                    model.addIndividualToGraph(
                        vslc_id, vslc_label,
                        self.globaltt['variant single locus complement'])
                if len(vslc_list) > 0:
                    if len(vslc_list) > 1:
                        gvc_id = '-'.join(vslc_list)
                        gvc_id = re.sub(r'_|:', '', gvc_id)
                        gvc_id = '_:'+gvc_id
                        gvc_label = '; '.join(self.id_label_hash[v] for v in vslc_list)
                        model.addIndividualToGraph(
                            gvc_id, gvc_label,
                            self.globaltt['genomic_variation_complement'])
                        for vslc_id in vslc_list:
                            geno.addVSLCtoParent(vslc_id, gvc_id)
                    else:
                        # the GVC == VSLC, so don't have to make an extra piece
                        gvc_id = vslc_list.pop()
                        gvc_label = self.id_label_hash[gvc_id]

                    genotype_label = gvc_label + ' [n.s.]'
                    bkgd_id = re.sub(
                        r':', '', '-'.join((
                            self.globaltt['unspecified_genomic_background'], s)))
                    genotype_id = '-'.join((gvc_id, bkgd_id))
                    bkgd_id = '_:' + bkgd_id
                    geno.addTaxon(mouse_taxon, bkgd_id)
                    geno.addGenomicBackground(
                        bkgd_id, 'unspecified (' + s + ')',
                        self.globaltt['unspecified_genomic_background'],
                        "A placeholder for the unspecified genetic background for " + s)
                    geno.addGenomicBackgroundToGenotype(
                        bkgd_id, genotype_id,
                        self.globaltt['unspecified_genomic_background'])
                    geno.addParts(
                        gvc_id, genotype_id, self.globaltt['has_variant_part'])
                    geno.addGenotype(genotype_id, genotype_label)
                    graph.addTriple(
                        s, self.globaltt['has_genotype'], genotype_id)
                else:
                    # LOG.debug(
                    #   "Strain %s is not making a proper genotype.", s)
                    pass

            LOG.warning(
                "The following gene symbols did not list identifiers: %s",
                str(sorted(list(genes_with_no_ids))))
            LOG.error(
                '%i symbols given are missing their gene identifiers',
                len(genes_with_no_ids))

        return
예제 #15
0
파일: UDP.py 프로젝트: tegar9000/dipper-1
    def _parse_patient_variants(self, file):
        """
        :param file: file handler
        :return:
        """
        patient_var_map = self._convert_variant_file_to_dict(file)
        gene_coordinate_map = self._parse_gene_coordinates(
            self.map_files['gene_coord_map'])
        rs_map = self._parse_rs_map_file(self.map_files['dbsnp_map'])

        genotype = Genotype(self.graph)
        model = Model(self.graph)

        self._add_variant_gene_relationship(patient_var_map,
                                            gene_coordinate_map)

        for patient in patient_var_map:
            patient_curie = 'MONARCH:{0}'.format(patient)
            # make intrinsic genotype for each patient
            intrinsic_geno_bnode = self.make_id(
                "{0}-intrinsic-genotype".format(patient), "_")
            genotype_label = "{0} genotype".format(patient)
            genotype.addGenotype(intrinsic_geno_bnode, genotype_label,
                                 model.globaltt['intrinsic genotype'])

            self.graph.addTriple(patient_curie, model.globaltt['has_genotype'],
                                 intrinsic_geno_bnode)
            for variant_id, variant in patient_var_map[patient].items():
                build = variant['build']
                chromosome = variant['chromosome']
                position = variant['position']
                reference_allele = variant['reference_allele']
                variant_allele = variant['variant_allele']
                genes_of_interest = variant['genes_of_interest']
                rs_id = variant['rs_id']

                variant_label = ''
                variant_bnode = self.make_id("{0}".format(variant_id), "_")

                # maybe should have these look like the elif statements below
                if position and reference_allele and variant_allele:
                    variant_label = self._build_variant_label(
                        build, chromosome, position, reference_allele,
                        variant_allele, genes_of_interest)
                elif not position and reference_allele and variant_allele \
                        and len(genes_of_interest) == 1:

                    variant_label = self._build_variant_label(
                        build, chromosome, position, reference_allele,
                        variant_allele, genes_of_interest)
                elif position and (not reference_allele or not variant_allele) \
                        and len(genes_of_interest) == 1:

                    variant_label = "{0}{1}({2}):g.{3}".format(
                        build, chromosome, genes_of_interest[0], position)
                elif len(genes_of_interest) == 1:
                    variant_label = 'variant of interest in {0} gene of patient' \
                        ' {1}'.format(genes_of_interest[0], patient)
                else:
                    variant_label = 'variant of interest in patient {0}'.format(
                        patient)

                genotype.addSequenceAlteration(variant_bnode, None)
                # check if it we have built the label
                # in _add_variant_gene_relationship()
                labels = self.graph.objects(
                    BNode(re.sub(r'^_:', '', variant_bnode, 1)), RDFS['label'])

                label_list = list(labels)

                if len(label_list) == 0:
                    model.addLabel(variant_bnode, variant_label)

                self.graph.addTriple(variant_bnode, self.globaltt['in taxon'],
                                     self.globaltt['H**o sapiens'])
                self.graph.addTriple(intrinsic_geno_bnode,
                                     self.globaltt['has_variant_part'],
                                     variant_bnode)
                if rs_id:
                    dbsnp_curie = 'dbSNP:{0}'.format(rs_id)
                    model.addSameIndividual(variant_bnode, dbsnp_curie)

        self._add_variant_sameas_relationships(patient_var_map, rs_map)
        return
예제 #16
0
    def _process_data(self, source, limit=None):
        """
        This function will process the data files from Coriell.
        We make the assumption that any alleles listed are variants
        (alternates to w.t.)

        Triples: (examples)

        :NIGMSrepository a CLO_0000008 #repository
        label : NIGMS Human Genetic Cell Repository
        foaf:page
         https://catalog.coriell.org/0/sections/collections/NIGMS/?SsId=8

        line_id a CL_0000057,  #fibroblast line
            derives_from patient_id
            part_of :NIGMSrepository
            RO:model_of OMIM:disease_id

        patient id a foaf:person,
            label: "fibroblast from patient 12345 with disease X"
            member_of family_id  #what is the right thing here?
            SIO:race EFO:caucasian  #subclass of EFO:0001799
            in_taxon NCBITaxon:9606
            dc:description Literal(remark)
            RO:has_phenotype OMIM:disease_id
            GENO:has_genotype genotype_id

        family_id a owl:NamedIndividual
            foaf:page
             "https://catalog.coriell.org/0/Sections/BrowseCatalog/FamilyTypeSubDetail.aspx?PgId=402&fam=2104&coll=GM"

        genotype_id a intrinsic_genotype
            GENO:has_alternate_part allelic_variant_id
            we don't necessarily know much about the genotype,
            other than the allelic variant. also there's the sex here

        pub_id mentions cell_line_id

        :param raw:
        :param limit:
        :return:

        """
        raw = '/'.join((self.rawdir, self.files[source]['file']))

        LOG.info("Processing Data from %s", raw)

        if self.testMode:  # set the graph to build
            graph = self.testgraph
        else:
            graph = self.graph

        family = Family(graph)
        model = Model(graph)

        line_counter = 1
        geno = Genotype(graph)
        diputil = DipperUtil()
        col = self.files[source]['columns']
        # affords access with
        # x = row[col.index('x')].strip()

        with open(raw, 'r', encoding="iso-8859-1") as csvfile:
            filereader = csv.reader(csvfile, delimiter=',', quotechar=r'"')
            # we can keep a close watch on changing file formats
            fileheader = next(filereader, None)
            fileheader = [c.lower() for c in fileheader]
            if col != fileheader:  # assert
                LOG.error('Expected  %s to have columns: %s', raw, col)
                LOG.error('But Found %s to have columns: %s', raw, fileheader)
                raise AssertionError('Incomming data headers have changed.')

            for row in filereader:
                line_counter += 1
                if len(row) != len(col):
                    LOG.warning('Expected %i values but find %i in  row %i',
                                len(col), len(row), line_counter)
                    continue

                # (catalog_id, description, omim_number, sample_type,
                # cell_line_available, dna_in_stock, dna_ref, gender, age,
                # race, ethnicity, affected, karyotype, relprob, mutation,
                # gene, family_id, collection, url, cat_remark, pubmed_ids,
                # family_member, variant_id, dbsnp_id, species) = row

                # example:
                # GM00003,HURLER SYNDROME,607014,Fibroblast,Yes,No,
                #       ,Female,26 YR,Caucasian,,,,
                # parent,,,39,NIGMS Human Genetic Cell Repository,
                # http://ccr.coriell.org/Sections/Search/Sample_Detail.aspx?Ref=GM00003,
                # 46;XX; clinically normal mother of a child with Hurler syndrome;
                #       proband not in Repository,,
                # 2,,18343,H**o sapiens

                catalog_id = row[col.index('catalog_id')].strip()

                if self.testMode and catalog_id not in self.test_lines:
                    # skip rows not in our test lines, when in test mode
                    continue

                # ###########    BUILD REQUIRED VARIABLES    ###########

                # Make the cell line ID
                cell_line_id = 'Coriell:' + catalog_id
                # Map the cell/sample type
                cell_type = self.resolve(row[col.index('sample_type')].strip())
                # on fail cell_type = self.globaltt['cell'] ?

                # Make a cell line label
                collection = row[col.index('collection')].strip()
                line_label = collection.partition(' ')[0] + '-' + catalog_id

                # Map the repository/collection
                repository = self.localtt[collection]

                # patients are uniquely identified by one of:
                # dbsnp id (which is == an individual haplotype)
                # family id + family member (if present) OR
                # probands are usually family member zero
                # cell line id
                # since some patients have >1 cell line derived from them,
                # we must make sure that the genotype is attached to
                # the patient, and can be inferred to the cell line
                # examples of repeated patients are:
                #   famid=1159, member=1; fam=152,member=1

                # Make the patient ID

                # make an anonymous patient
                patient_id = '_:person'
                fam_id = row[col.index('fam')].strip()
                fammember = row[col.index('fammember')].strip()
                if fam_id != '':
                    patient_id = '-'.join((patient_id, fam_id, fammember))
                else:
                    # make an anonymous patient
                    patient_id = '-'.join((patient_id, catalog_id))

                # properties of the individual patients:  sex, family id,
                # member/relproband, description descriptions are
                # really long and ugly SCREAMING text, so need to clean up
                # the control cases are so odd with this labeling scheme;
                # but we'll deal with it as-is for now.
                description = row[col.index('description')].strip()
                short_desc = (description.split(';')[0]).capitalize()

                gender = row[col.index('gender')].strip().lower()
                affected = row[col.index('affected')].strip()
                relprob = row[col.index('relprob')].strip()

                if affected == '':
                    affected = 'unspecified'
                elif affected in self.localtt:
                    affected = self.localtt[affected]
                else:
                    LOG.warning('Novel Affected status  %s at row: %i of %s',
                                affected, line_counter, raw)
                patient_label = ' '.join((affected, gender, relprob))
                if relprob == 'proband':
                    patient_label = ' '.join(
                        (patient_label.strip(), 'with', short_desc))
                else:
                    patient_label = ' '.join(
                        (patient_label.strip(), 'of proband with', short_desc))

                # #############    BUILD THE CELL LINE    #############

                # Adding the cell line as a typed individual.
                cell_line_reagent_id = self.globaltt['cell line']

                model.addIndividualToGraph(cell_line_id, line_label,
                                           cell_line_reagent_id)

                # add the equivalent id == dna_ref
                dna_ref = row[col.index('dna_ref')].strip()
                if dna_ref != '' and dna_ref != catalog_id:
                    equiv_cell_line = 'Coriell:' + dna_ref
                    # some of the equivalent ids are not defined
                    # in the source data; so add them
                    model.addIndividualToGraph(equiv_cell_line, None,
                                               cell_line_reagent_id)
                    model.addSameIndividual(cell_line_id, equiv_cell_line)

                # Cell line derives from patient
                geno.addDerivesFrom(cell_line_id, patient_id)
                geno.addDerivesFrom(cell_line_id, cell_type)

                # Cell line a member of repository
                family.addMember(repository, cell_line_id)

                cat_remark = row[col.index('cat_remark')].strip()

                if cat_remark != '':
                    model.addDescription(cell_line_id, cat_remark)

                # Cell age_at_sampling
                # TODO add the age nodes when modeled properly in #78
                # if (age != ''):
                # this would give a BNode that is an instance of Age.
                # but i don't know how to connect
                # the age node to the cell line? we need to ask @mbrush
                # age_id = '_'+re.sub('\s+','_',age)
                # gu.addIndividualToGraph(
                #   graph,age_id,age,self.globaltt['age'])
                # gu.addTriple(
                #   graph,age_id,self.globaltt['has measurement value'],age,
                #   True)

                # #############    BUILD THE PATIENT    #############

                # Add the patient ID as an individual.
                model.addPerson(patient_id, patient_label)
                # TODO map relationship to proband as a class
                # (what ontology?)

                # Add race of patient
                # FIXME: Adjust for subcategories based on ethnicity field
                # EDIT: There are 743 different entries for ethnicity...
                # Too many to map?
                # Add ethnicity as literal in addition to the mapped race?
                # Adjust the ethnicity txt (if using)
                # to initial capitalization to remove ALLCAPS

                # TODO race should go into the individual's background
                # and abstracted out to the Genotype class punting for now.
                # if race != '':
                #    mapped_race = self.resolve(race)
                #    if mapped_race is not None:
                #        gu.addTriple(
                #           g,patient_id,self.globaltt['race'], mapped_race)
                #        model.addSubClass(
                #           mapped_race,self.globaltt['ethnic_group'])

                # #############    BUILD THE FAMILY    #############

                # Add triples for family_id, if present.
                if fam_id != '':
                    family_comp_id = 'CoriellFamily:' + fam_id

                    family_label = ' '.join(
                        ('Family of proband with', short_desc))

                    # Add the family ID as a named individual
                    model.addIndividualToGraph(family_comp_id, family_label,
                                               self.globaltt['family'])

                    # Add the patient as a member of the family
                    family.addMemberOf(patient_id, family_comp_id)

                # #############    BUILD THE GENOTYPE   #############

                # the important things to pay attention to here are:
                # karyotype = chr rearrangements  (somatic?)
                # mutation = protein-level mutation as a label,
                # often from omim
                # gene = gene symbol - TODO get id
                # variant_id = omim variant ids (; delimited)
                # dbsnp_id = snp individual ids = full genotype?

                # note GM00633 is a good example of chromosomal variation
                # - do we have enough to capture this?
                # GM00325 has both abnormal karyotype and variation

                # make an assumption that if the taxon is blank,
                # that it is human!
                species = row[col.index('species')].strip()
                if species is None or species == '':
                    species = 'H**o sapiens'
                taxon = self.resolve(species)

                # if there's a dbSNP id,
                # this is actually the individual's genotype
                genotype_id = None
                genotype_label = None

                dbsnp_id = row[col.index('dbsnp_id')].strip()
                if dbsnp_id != '':
                    genotype_id = 'dbSNPIndividual:' + dbsnp_id

                omim_map = {}
                gvc_id = None

                # some of the karyotypes are encoded
                # with terrible hidden codes. remove them here
                # i've seen a <98> character
                karyotype = row[col.index('karyotype')].strip()
                karyotype = diputil.remove_control_characters(karyotype)
                karyotype_id = None
                if karyotype.strip() != '':
                    karyotype_id = '_:' + re.sub('MONARCH:', '',
                                                 self.make_id(karyotype))
                    # add karyotype as karyotype_variation_complement
                    model.addIndividualToGraph(
                        karyotype_id, karyotype,
                        self.globaltt['karyotype_variation_complement'])
                    # TODO break down the karyotype into parts
                    # and map into GENO. depends on #77

                    # place the karyotype in a location(s).
                    karyo_chrs = self._get_affected_chromosomes_from_karyotype(
                        karyotype)
                    for chrom in karyo_chrs:
                        chr_id = makeChromID(chrom, taxon, 'CHR')
                        # add an anonymous sequence feature,
                        # each located on chr
                        karyotype_feature_id = '-'.join((karyotype_id, chrom))
                        karyotype_feature_label = \
                            'some karyotype alteration on chr' + str(chrom)
                        feat = Feature(graph, karyotype_feature_id,
                                       karyotype_feature_label,
                                       self.globaltt['sequence_alteration'])
                        feat.addFeatureStartLocation(None, chr_id)
                        feat.addFeatureToGraph()
                        geno.addParts(karyotype_feature_id, karyotype_id,
                                      self.globaltt['has_variant_part'])

                gene = row[col.index('gene')].strip()
                mutation = row[col.index('mutation')].strip()
                if gene != '':
                    vl = gene + '(' + mutation + ')'

                # fix the variant_id so it's always in the same order
                variant_id = row[col.index('variant_id')].strip()
                vids = variant_id.split(';')
                variant_id = ';'.join(sorted(list(set(vids))))

                if karyotype.strip() != '' and not self._is_normal_karyotype(
                        karyotype):

                    gvc_id = karyotype_id
                    if variant_id != '':
                        gvc_id = '_:' + variant_id.replace(';', '-') + '-' \
                            + re.sub(r'\w*:', '', karyotype_id)
                    if mutation.strip() != '':
                        gvc_label = '; '.join((vl, karyotype))
                    else:
                        gvc_label = karyotype
                elif variant_id.strip() != '':
                    gvc_id = '_:' + variant_id.replace(';', '-')
                    gvc_label = vl
                else:
                    # wildtype?
                    pass

                # add the karyotype to the gvc.
                # use reference if normal karyotype
                karyo_rel = self.globaltt['has_variant_part']
                if self._is_normal_karyotype(karyotype):
                    karyo_rel = self.globaltt['has_reference_part']
                if karyotype_id is not None \
                        and not self._is_normal_karyotype(karyotype) \
                        and gvc_id is not None and karyotype_id != gvc_id:
                    geno.addParts(karyotype_id, gvc_id, karyo_rel)

                if variant_id.strip() != '':
                    # split the variants & add them as part of the genotype
                    # we don't necessarily know their zygosity,
                    # just that they are part of the genotype variant ids
                    # are from OMIM, so prefix as such we assume that the
                    # sequence alts will be defined in OMIM not here
                    # TODO sort the variant_id list, if the omim prefix is
                    # the same, then assume it's the locus make a hashmap
                    # of the omim id to variant id list;
                    # then build the genotype hashmap is also useful for
                    # removing the "genes" from the list of "phenotypes"

                    # will hold gene/locus id to variant list
                    omim_map = {}

                    locus_num = None
                    for var in variant_id.split(';'):
                        # handle omim-style and odd var ids
                        # like 610661.p.R401X
                        mch = re.match(r'(\d+)\.+(.*)', var.strip())
                        if mch is not None and len(mch.groups()) == 2:
                            (locus_num, var_num) = mch.groups()

                        if locus_num is not None and locus_num not in omim_map:
                            omim_map[locus_num] = [var_num]
                        else:
                            omim_map[locus_num] += [var_num]

                    for omim in omim_map:
                        # gene_id = 'OMIM:' + omim  # TODO unused
                        vslc_id = '_:' + '-'.join(
                            [omim + '.' + a for a in omim_map.get(omim)])
                        vslc_label = vl
                        # we don't really know the zygosity of
                        # the alleles at all.
                        # so the vslcs are just a pot of them
                        model.addIndividualToGraph(
                            vslc_id, vslc_label,
                            self.globaltt['variant single locus complement'])
                        for var in omim_map.get(omim):
                            # this is actually a sequence alt
                            allele1_id = 'OMIM:' + omim + '.' + var
                            geno.addSequenceAlteration(allele1_id, None)

                            # assume that the sa -> var_loc -> gene
                            # is taken care of in OMIM
                            geno.addPartsToVSLC(
                                vslc_id, allele1_id, None,
                                self.globaltt['indeterminate'],
                                self.globaltt['has_variant_part'])

                        if vslc_id != gvc_id:
                            geno.addVSLCtoParent(vslc_id, gvc_id)

                if affected == 'unaffected':
                    # let's just say that this person is wildtype
                    model.addType(patient_id, self.globaltt['wildtype'])
                elif genotype_id is None:
                    # make an anonymous genotype id (aka blank node)
                    genotype_id = '_:geno' + catalog_id.strip()

                # add the gvc
                if gvc_id is not None:
                    model.addIndividualToGraph(
                        gvc_id, gvc_label,
                        self.globaltt['genomic_variation_complement'])

                    # add the gvc to the genotype
                    if genotype_id is not None:
                        if affected == 'unaffected':
                            rel = self.globaltt['has_reference_part']
                        else:
                            rel = self.globaltt['has_variant_part']
                        geno.addParts(gvc_id, genotype_id, rel)

                    if karyotype_id is not None \
                            and self._is_normal_karyotype(karyotype):
                        if gvc_label is not None and gvc_label != '':
                            genotype_label = '; '.join((gvc_label, karyotype))
                        elif karyotype is not None:
                            genotype_label = karyotype
                        if genotype_id is None:
                            genotype_id = karyotype_id
                        else:
                            geno.addParts(karyotype_id, genotype_id,
                                          self.globaltt['has_reference_part'])
                    else:
                        genotype_label = gvc_label
                        # use the catalog id as the background
                    genotype_label += ' [' + catalog_id.strip() + ']'

                if genotype_id is not None and gvc_id is not None:
                    # only add the genotype if it has some parts
                    geno.addGenotype(genotype_id, genotype_label,
                                     self.globaltt['intrinsic_genotype'])
                    geno.addTaxon(taxon, genotype_id)
                    # add that the patient has the genotype
                    # TODO check if the genotype belongs to
                    # the cell line or to the patient
                    graph.addTriple(patient_id, self.globaltt['has_genotype'],
                                    genotype_id)
                else:
                    geno.addTaxon(taxon, patient_id)

                # TODO: Add sex/gender  (as part of the karyotype?)
                # = row[col.index('')].strip()
                # #############    DEAL WITH THE DISEASES   #############
                omim_num = row[col.index('omim_num')].strip()

                # we associate the disease to the patient
                if affected == 'affected' and omim_num != '':
                    for d in omim_num.split(';'):
                        if d is not None and d != '':
                            # if the omim number is in omim_map,
                            # then it is a gene not a pheno

                            # TEC - another place to use the mimTitle omim
                            # classifier omia & genereviews are using

                            if d not in omim_map:
                                disease_id = 'OMIM:' + d.strip()
                                # assume the label is taken care of in OMIM
                                model.addClassToGraph(disease_id, None)

                                # add the association:
                                #   the patient has the disease
                                assoc = G2PAssoc(graph, self.name, patient_id,
                                                 disease_id)
                                assoc.add_association_to_graph()

                                # this line is a model of this disease
                                # TODO abstract out model into
                                # it's own association class?
                                graph.addTriple(cell_line_id,
                                                self.globaltt['is model of'],
                                                disease_id)
                            else:
                                LOG.info('drop gene %s from disease list', d)

                # #############    ADD PUBLICATIONS   #############
                pubmed_ids = row[col.index('pubmed_ids')].strip()
                if pubmed_ids != '':
                    for s in pubmed_ids.split(';'):
                        pubmed_id = 'PMID:' + s.strip()
                        ref = Reference(graph, pubmed_id)
                        ref.setType(self.globaltt['journal article'])
                        ref.addRefToGraph()
                        graph.addTriple(pubmed_id, self.globaltt['mentions'],
                                        cell_line_id)

                if not self.testMode and (limit is not None
                                          and line_counter > limit):
                    break
        return
예제 #17
0
파일: CGD.py 프로젝트: zzygyx9119/mckb
    def add_disease_drug_variant_to_graph(self, table):
        """
        Takes an iterable of iterables as input with the following structure,
        optional indices can be Null:
        [[variant_key, variant_label, diagnoses_key, diagnoses,
          specific_diagnosis, organ, relationship,
          drug_key, drug, therapy_status (optional), pubmed_id(optional)]]

        See ongoing discussion of how to best model here:
        https://github.com/monarch-initiative/mckb/issues/9

        :param table: iterable of iterables, for example, a tuple of tuples
                      from _get_disease_drug_variant_relationship
        :return: None
        """
        gu = GraphUtils(curie_map.get())
        geno = Genotype(self.graph)

        for row in table:
            (variant_key, variant_label, diagnoses_key, diagnoses,
             specific_diagnosis, organ, relationship,
             drug_key, drug_label, therapy_status, pubmed_id) = row

            if specific_diagnosis is not None:
                diagnoses_label = specific_diagnosis
            else:
                diagnoses_label = diagnoses

            # Arbitrary IDs to be replaced by ontology mappings
            variant_id = self.make_cgd_id('variant{0}'.format(variant_key))
            disease_id = self._get_disease_id(diagnoses_key, diagnoses_label)
            therapy_status_id = self.make_cgd_id('{0}'.format(therapy_status))
            relationship_id = "RO:has_environment"
            disease_quality = ("CGD:{0}".format(relationship)).replace(" ", "_")
            has_quality_property = "BFO:0000159"
            drug_id = self._get_drug_id(drug_key, drug_label)

            geno.addGenotype(variant_id, variant_label,
                             geno.genoparts['sequence_alteration'])

            disease_instance_id = self.make_cgd_id('disease{0}{1}'.format(
                                                     diagnoses_label, variant_key))

            phenotype_instance_id = self.make_cgd_id('phenotype{0}{1}{2}'.format(
                                                     diagnoses_label, variant_key, relationship))

            phenotype_instance_label = "{0} with {1} to therapy".format(diagnoses_label, relationship)
            if relationship == "detrimental effect":
                phenotype_instance_label = "{0} with therapeutic response {1} to health"\
                                           .format(diagnoses_label, relationship)

            # Reified association for disease caused_by genotype
            variant_disease_annot = self.make_cgd_id("assoc{0}{1}".format(variant_key, diagnoses_label))

            # Add individuals/classes
            gu.addClassToGraph(self.graph, disease_id, diagnoses_label, 'DOID:4')

            gu.addClassToGraph(self.graph, drug_id, drug_label, 'CHEBI:23888')
            gu.addIndividualToGraph(self.graph, phenotype_instance_id, phenotype_instance_label,
                                    disease_id)
            gu.loadObjectProperties(self.graph, {relationship: relationship_id})

            if pubmed_id is not None:
                source_id = "PMID:{0}".format(pubmed_id)
                ref = Reference(source_id, Reference.ref_types['journal_article'])
                ref.addRefToGraph(self.graph)
                evidence = 'ECO:0000033'
            else:
                source_id = None
                evidence = None

            rel_id = gu.object_properties['has_phenotype']
            variant_phenotype_assoc = G2PAssoc(self.name,
                                               variant_id,
                                               phenotype_instance_id,
                                               rel_id)

            variant_phenotype_assoc.set_association_id(variant_disease_annot)
            if evidence:
                variant_phenotype_assoc.add_evidence(evidence)

            if source_id:
                variant_phenotype_assoc.add_source(source_id)

            variant_phenotype_assoc.add_association_to_graph(self.graph)
            gu.addTriple(self.graph, variant_disease_annot, relationship_id, drug_id)
            gu.addTriple(self.graph, phenotype_instance_id, has_quality_property, disease_quality)

            # Add therapy-disease association and approval status
            marker_relation = "RO:has_biomarker"

            disease_instance_label = "{0} with biomarker {1}".format(diagnoses_label, variant_label)
            gu.addIndividualToGraph(self.graph, disease_instance_id, disease_instance_label,
                                    disease_id)
            gu.addTriple(self.graph, disease_instance_id, marker_relation, variant_id)

            gu.addClassToGraph(self.graph, therapy_status_id, therapy_status)
            self._add_therapy_drug_association(drug_id, disease_instance_id, therapy_status_id)

        return
예제 #18
0
파일: MPD.py 프로젝트: alexgarciac/dipper
    def _add_g2p_assoc(self, graph, strain_id, sex, assay_id, phenotypes,
                       comment):
        """
        Create an association between a sex-specific strain id
        and each of the phenotypes.
        Here, we create a genotype from the strain,
        and a sex-specific genotype.
        Each of those genotypes are created as anonymous nodes.

        The evidence code is hardcoded to be:
            ECO:experimental_phenotypic_evidence.

        :param g:
        :param strain_id:
        :param sex:
        :param assay_id:
        :param phenotypes: a list of phenotypes to association with the strain
        :param comment:
        :return:

        """
        geno = Genotype(graph)
        model = Model(graph)
        eco_id = self.globaltt['experimental phenotypic evidence']
        strain_label = self.idlabel_hash.get(strain_id)
        # strain genotype
        genotype_id = '_' + '-'.join((re.sub(r':', '', strain_id), 'genotype'))
        genotype_label = '[' + strain_label + ']'

        sex_specific_genotype_id = '_' + '-'.join(
            (re.sub(r':', '', strain_id), sex, 'genotype'))
        if strain_label is not None:
            sex_specific_genotype_label = strain_label + ' (' + sex + ')'
        else:
            sex_specific_genotype_label = strain_id + '(' + sex + ')'

        genotype_type = self.globaltt['sex_qualified_genotype']
        if sex == 'm':
            genotype_type = self.globaltt['male_genotype']
        elif sex == 'f':
            genotype_type = self.globaltt['female_genotype']

        # add the genotype to strain connection
        geno.addGenotype(genotype_id, genotype_label,
                         self.globaltt['genomic_background'])
        graph.addTriple(strain_id, self.globaltt['has_genotype'], genotype_id)

        geno.addGenotype(sex_specific_genotype_id, sex_specific_genotype_label,
                         genotype_type)

        # add the strain as the background for the genotype
        graph.addTriple(sex_specific_genotype_id,
                        self.globaltt['has_sex_agnostic_part'], genotype_id)

        # #############    BUILD THE G2P ASSOC    #############
        # TODO add more provenance info when that model is completed

        if phenotypes is not None:
            for phenotype_id in phenotypes:
                assoc = G2PAssoc(graph, self.name, sex_specific_genotype_id,
                                 phenotype_id)
                assoc.add_evidence(assay_id)
                assoc.add_evidence(eco_id)
                assoc.add_association_to_graph()
                assoc_id = assoc.get_association_id()
                model.addComment(assoc_id, comment)
                model._addSexSpecificity(assoc_id, self.resolve(sex))

        return
예제 #19
0
class MPD(Source):
    """
    From the [MPD](http://phenome.jax.org/) website:
    This resource is a collaborative standardized collection of measured data
    on laboratory mouse strains and populations. Includes baseline phenotype
    data sets as well as studies of drug, diet, disease and aging effect.
    Also includes protocols, projects and publications, and SNP,
    variation and gene expression studies.

    Here, we pull the data and model the genotypes using GENO and
    the genotype-to-phenotype associations using the OBAN schema.

    MPD provide measurements for particular assays for several strains.
    Each of these measurements is itself mapped to a MP or VT term
    as a phenotype.  Therefore, we can create a strain-to-phenotype association
    based on those strains that lie outside of the "normal" range for the given
    measurements.  We can compute the average of the measurements
    for all strains tested, and then threshold any extreme measurements being
    beyond some threshold beyond the average.

    Our default threshold here, is +/-2 standard deviations beyond the mean.

    Because the measurements are made and recorded at the level of
    a specific sex of each strain, we associate the MP/VT phenotype with
    the sex-qualified genotype/strain.

    """
    mdpdl = 'http://phenomedoc.jax.org/MPD_downloads'
    files = {
        'ontology_mappings': {
            'file': 'ontology_mappings.csv',
            'url': mdpdl+'/ontology_mappings.csv'},
        'straininfo': {
            'file': 'straininfo.csv',
            'url': mdpdl+'/straininfo.csv'},
        'assay_metadata': {
            'file': 'measurements.csv',
            'url': mdpdl+'/measurements.csv'},
        'strainmeans': {
            'file': 'strainmeans.csv.gz',
            'url': mdpdl+'/strainmeans.csv.gz'},
        # 'mpd_datasets_metadata': { #TEC does not seem to be used
        #    'file': 'mpd_datasets_metadata.xml.gz',
        #    'url': mdpdl+'/mpd_datasets_metadata.xml.gz'},
    }

    # the following are strain ids for testing
    # test_ids = [
    #   "MPD:2", "MPD:3", "MPD:5", "MPD:6", "MPD:9", "MPD:11", "MPD:18",
    #   "MPD:20", "MPD:24", "MPD:28", "MPD:30", "MPD:33", "MPD:34", "MPD:36",
    #   "MPD:37", "MPD:39", "MPD:40", "MPD:42", "MPD:47", "MPD:66", "MPD:68",
    #   "MPD:71", "MPD:75", "MPD:78", "MPD:122", "MPD:169", "MPD:438",
    #   "MPD:457","MPD:473", "MPD:481", "MPD:759", "MPD:766", "MPD:770",
    #   "MPD:849",  "MPD:857", "MPD:955", "MPD:964", "MPD:988", "MPD:1005",
    #   "MPD:1017", "MPD:1204", "MPD:1233", "MPD:1235", "MPD:1236", "MPD:1237"]

    test_ids = [
        'MPD:6', 'MPD:849', 'MPD:425', 'MPD:569', "MPD:10", "MPD:1002",
        "MPD:39", "MPD:2319"]

    mgd_agent_id = "MPD:db/q?rtn=people/allinv"
    mgd_agent_label = "Mouse Phenotype Database"
    mgd_agent_type = "foaf:organization"

    def __init__(self):
        Source.__init__(self, 'mpd')
        # @N, not sure if this step is required
        self.namespaces.update(curie_map.get())
        self.stdevthreshold = 2

        self.nobnodes = True  # FIXME

        # update the dataset object with details about this resource
        # @N: Note that there is no license as far as I can tell
        self.dataset = Dataset(
            'mpd', 'MPD', 'http://phenome.jax.org', None, None)

        # TODO add a citation for mpd dataset as a whole
        self.dataset.set_citation('PMID:15619963')

        self.assayhash = {}
        self.idlabel_hash = {}
        # to store the mean/zscore of each measure by strain+sex
        self.score_means_by_measure = {}
        # to store the mean value for each measure by strain+sex
        self.strain_scores_by_measure = {}

        self.geno = Genotype(self.graph)
        self.gu = GraphUtils(curie_map.get())

        return

    def fetch(self, is_dl_forced=False):

        self.get_files(is_dl_forced)
        return

    def parse(self, limit=None):
        """
        MPD data is delivered in four separate csv files and one xml file,
        which we process iteratively and write out as
        one large graph.

        :param limit:
        :return:
        """
        if limit is not None:
            logger.info("Only parsing first %s rows fo each file", str(limit))

        logger.info("Parsing files...")

        if self.testOnly:
            self.testMode = True
            g = self.testgraph
            self.geno = Genotype(self.testgraph)
        else:
            g = self.graph

        self._process_straininfo(limit)
        # the following will provide us the hash-lookups
        # These must be processed in a specific order

        # mapping between assays and ontology terms
        self._process_ontology_mappings_file(limit)
        # this is the metadata about the measurements
        self._process_measurements_file(limit)
        # get all the measurements per strain
        self._process_strainmeans_file(limit)

        # The following will use the hash populated above
        # to lookup the ids when filling in the graph
        self._fill_provenance_graph(limit)

        logger.info("Finished parsing.")

        self.load_bindings()

        gu = GraphUtils(curie_map.get())
        gu.loadAllProperties(g)
        gu.loadProperties(g, G2PAssoc.object_properties, GraphUtils.OBJPROP)
        gu.loadProperties(g, G2PAssoc.datatype_properties, GraphUtils.OBJPROP)
        gu.loadProperties(
            g, G2PAssoc.annotation_properties, GraphUtils.ANNOTPROP)

        logger.info("Found %d nodes", len(self.graph))
        return

    def _process_ontology_mappings_file(self, limit):

        # line_counter = 0  # TODO unused

        logger.info("Processing ontology mappings...")
        raw = '/'.join((self.rawdir, 'ontology_mappings.csv'))

        with open(raw, 'r') as f:
            reader = csv.reader(f)
            # read the header row; skip
            f.readline()
            for row in reader:
                try:
                    (assay_id, ont_term, descrip) = row
                except ValueError:
                    continue
                assay_id = int(assay_id)
                if re.match(r'(MP|VT)', ont_term):
                    # add the mapping denovo
                    if assay_id not in self.assayhash:
                        self.assayhash[assay_id] = {}
                        self.assayhash[assay_id]['ont_terms'] = set()
                    self.assayhash[assay_id]['ont_terms'].add(ont_term)

        return

    def _process_straininfo(self, limit):
        # line_counter = 0  # TODO unused
        if self.testMode:
            g = self.testgraph
        else:
            g = self.graph

        logger.info("Processing measurements ...")
        raw = '/'.join((self.rawdir, self.files['straininfo']['file']))

        tax_id = 'NCBITaxon:10090'

        gu = GraphUtils(curie_map.get())

        with open(raw, 'r') as f:
            reader = csv.reader(f, delimiter=',', quotechar='\"')
            f.readline()  # read the header row; skip
            for row in reader:
                (strain_name, vendor, stocknum, panel, mpd_strainid,
                 straintype, n_proj, n_snp_datasets, mpdshortname, url) = row
                # C57BL/6J,J,000664,,7,IN,225,17,,http://jaxmice.jax.org/strain/000664.html
                # create the strain as an instance of the taxon
                if self.testMode and \
                        'MPD:'+str(mpd_strainid) not in self.test_ids:
                    continue
                strain_id = 'MPD-strain:'+str(mpd_strainid)
                gu.addIndividualToGraph(g, strain_id, strain_name, tax_id)
                if mpdshortname.strip() != '':
                    gu.addSynonym(g, strain_id, mpdshortname.strip())
                self.idlabel_hash[strain_id] = strain_name
                # make it equivalent to the vendor+stock
                if stocknum != '':
                    if vendor == 'J':
                        jax_id = 'JAX:'+stocknum
                        gu.addSameIndividual(g, strain_id, jax_id)
                    elif vendor == 'Rbrc':
                        # reiken
                        reiken_id = 'RBRC:'+re.sub(r'RBRC', '', stocknum)
                        gu.addSameIndividual(g, strain_id, reiken_id)
                    else:
                        if url != '':
                            gu.addXref(g, strain_id, url, True)
                        if vendor != '':
                            gu.addXref(
                                g, strain_id, ':'.join((vendor, stocknum)),
                                True)

                # add the panel information
                if panel != '':
                    desc = panel+' [panel]'
                    gu.addDescription(g, strain_id, desc)

                # TODO make the panels as a resource collection

        return

    def _process_measurements_file(self, limit):
        line_counter = 0

        logger.info("Processing measurements ...")
        raw = '/'.join((self.rawdir, 'measurements.csv'))

        with open(raw, 'r') as f:
            reader = csv.reader(f)
            # read the header row; skip
            header = f.readline()
            logger.info("HEADER: %s", header)
            for row in reader:
                # measnum,projsym,varname,descrip,units,cat1,cat2,cat3,
                # intervention,intparm,appmeth,panelsym,datatype,sextested,
                # nstrainstested,ageweeks
                # Again the last row has changed. contains: '(4486 rows)'
                if len(row) != 16:
                    continue
                line_counter += 1
                assay_id = int(row[0])
                assay_label = row[3]
                assay_units = row[4]
                assay_type = row[10] if row[10] is not '' else None

                if assay_id not in self.assayhash:
                    self.assayhash[assay_id] = {}
                description = self.build_measurement_description(row)
                self.assayhash[assay_id]['description'] = description
                self.assayhash[assay_id]['assay_label'] = assay_label
                self.assayhash[assay_id]['assay_type'] = assay_type
                self.assayhash[assay_id]['assay_units'] = assay_units

                # TODO add projectsym property?
                # TODO add intervention?
                # ageweeks might be useful for adding to phenotype assoc

            # end loop on measurement metadata

        return

    def _process_strainmeans_file(self, limit):
        """
        This will store the entire set of strain means in a hash.
        Not the most efficient representation,
        but easy access.
        We will loop through this later to then apply cutoffs
        and add associations
        :param limit:
        :return:

        """
        logger.info("Processing strain means ...")
        line_counter = 0
        raw = '/'.join((self.rawdir, self.files['strainmeans']['file']))
        with gzip.open(raw, 'rb') as f:
            f = io.TextIOWrapper(f)
            reader = csv.reader(f)
            f.readline()  # read the header row; skip
            score_means_by_measure = {}
            strain_scores_by_measure = {}
            for row in reader:
                try:
                    (measnum, varname, strain, strainid, sex, mean, nmice, sd,
                     sem, cv, minval, maxval, logmean, logsd, zscore,
                     logzscore) = row
                except ValueError:
                    continue
                line_counter += 1
                strain_num = int(strainid)
                assay_num = int(measnum)
                # assuming the zscore is across all the items
                # in the same measure+var+strain+sex
                # note: it seems that there is only ever 1 varname per measnum.
                # note: some assays only tested one sex!
                # we split this here by sex
                if assay_num not in score_means_by_measure:
                    score_means_by_measure[assay_num] = {}
                if sex not in score_means_by_measure[assay_num]:
                    score_means_by_measure[assay_num][sex] = list()
                score_means_by_measure[assay_num][sex].append(float(mean))

                if strain_num not in strain_scores_by_measure:
                    strain_scores_by_measure[strain_num] = {}
                if sex not in strain_scores_by_measure[strain_num]:
                    strain_scores_by_measure[strain_num][sex] = {}
                strain_scores_by_measure[strain_num][sex][assay_num] = \
                    {'mean': float(mean), 'zscore': float(zscore)}

            # end loop over strainmeans
        self.score_means_by_measure = score_means_by_measure
        self.strain_scores_by_measure = strain_scores_by_measure

        return

    def _fill_provenance_graph(self, limit):
        logger.info("Building graph ...")
        gu = GraphUtils(curie_map.get())
        if self.testMode:
            g = self.testgraph
        else:
            g = self.graph

        taxon_id = 'NCBITaxon:10090'  # hardcode to Mus musculus
        gu.addClassToGraph(g, taxon_id, None)

        scores_passing_threshold_count = 0
        scores_passing_threshold_with_ontologies_count = 0
        scores_not_passing_threshold_count = 0

        # loop through all the strains,
        # and make G2P assoc for those with scores beyond threshold
        for strain_num in self.strain_scores_by_measure:
            if self.testMode and 'MPD:'+str(strain_num) not in self.test_ids:
                continue
            strain_id = 'MPD-strain:'+str(strain_num)
            for sex in self.strain_scores_by_measure[strain_num]:
                measures = self.strain_scores_by_measure[strain_num][sex]
                for m in measures:
                    assay_id = 'MPD-assay:'+str(m)
                    # TODO consider using the means
                    # instead of precomputed zscores
                    if 'zscore' in measures[m]:
                        zscore = measures[m]['zscore']
                        if abs(zscore) >= self.stdevthreshold:
                            scores_passing_threshold_count += 1
                            # logger.info(
                            #   "Score passing threshold: %s | %s | %s",
                            #   strain_id, assay_id, zscore)
                            # add the G2P assoc
                            prov = Provenance()
                            assay_label = self.assayhash[m]['assay_label']
                            if assay_label is not None:
                                assay_label += ' ('+str(m)+')'
                            # TODO unused
                            # assay_type = self.assayhash[m]['assay_type']
                            assay_description = \
                                self.assayhash[m]['description']
                            assay_type_id = Provenance.prov_types['assay']
                            comment = ' '.join((assay_label,
                                                '(zscore='+str(zscore)+')'))
                            ont_term_ids = self.assayhash[m].get('ont_terms')
                            if ont_term_ids is not None:
                                scores_passing_threshold_with_ontologies_count += 1
                                prov.add_assay_to_graph(
                                    g, assay_id, assay_label, assay_type_id,
                                    assay_description)
                                self._add_g2p_assoc(
                                    g, strain_id, sex, assay_id, ont_term_ids,
                                    comment)
                        else:
                            scores_not_passing_threshold_count += 1

        logger.info("Scores passing threshold: %d",
                    scores_passing_threshold_count)
        logger.info("Scores passing threshold with ontologies: %d",
                    scores_passing_threshold_with_ontologies_count)
        logger.info("Scores not passing threshold: %d",
                    scores_not_passing_threshold_count)

        return

    def _add_g2p_assoc(self, g, strain_id, sex, assay_id, phenotypes, comment):
        """
        Create an association between a sex-specific strain id
        and each of the phenotypes.
        Here, we create a genotype from the strain,
        and a sex-specific genotype.
        Each of those genotypes are created as anonymous nodes.

        The evidence code is hardcoded to be:
            ECO:experimental_phenotypic_evidence.

        :param g:
        :param strain_id:
        :param sex:
        :param assay_id:
        :param phenotypes: a list of phenotypes to association with the strain
        :param comment:
        :return:

        """

        eco_id = "ECO:0000059"  # experimental_phenotypic_evidence
        strain_label = self.idlabel_hash.get(strain_id)
        # strain genotype
        genotype_id = '_'+'-'.join((re.sub(r':', '', strain_id), 'genotype'))
        genotype_label = '['+strain_label+']'

        sex_specific_genotype_id = '_'+'-'.join((re.sub(r':', '', strain_id),
                                                 sex, 'genotype'))
        if strain_label is not None:
            sex_specific_genotype_label = strain_label + ' (' + sex + ')'
        else:
            sex_specific_genotype_label = strain_id + '(' + sex + ')'

        if self.nobnodes:
            genotype_id = ':'+genotype_id
            sex_specific_genotype_id = ':'+sex_specific_genotype_id

        genotype_type = Genotype.genoparts['sex_qualified_genotype']
        if sex == 'm':
            genotype_type = Genotype.genoparts['male_genotype']
        elif sex == 'f':
            genotype_type = Genotype.genoparts['female_genotype']

        # add the genotype to strain connection
        self.geno.addGenotype(
            genotype_id, genotype_label,
            Genotype.genoparts['genomic_background'])
        self.gu.addTriple(
            g, strain_id,
            Genotype.object_properties['has_genotype'], genotype_id)

        self.geno.addGenotype(
            sex_specific_genotype_id, sex_specific_genotype_label,
            genotype_type)

        # add the strain as the background for the genotype
        self.gu.addTriple(
            g, sex_specific_genotype_id,
            Genotype.object_properties['has_sex_agnostic_genotype_part'],
            genotype_id)

        # #############    BUILD THE G2P ASSOC    #############
        # TODO add more provenance info when that model is completed

        if phenotypes is not None:
            for phenotype_id in phenotypes:
                assoc = G2PAssoc(
                    self.name, sex_specific_genotype_id, phenotype_id)
                assoc.add_evidence(assay_id)
                assoc.add_evidence(eco_id)
                assoc.add_association_to_graph(g)
                assoc_id = assoc.get_association_id()
                self.gu.addComment(g, assoc_id, comment)

        return

    def getTestSuite(self):
        import unittest
        from tests.test_mpd import MPDTestCase

        test_suite = unittest.TestLoader().loadTestsFromTestCase(MPDTestCase)

        return test_suite

    @staticmethod
    def normalise_units(units):
        # todo:
        return units

    @staticmethod
    def build_measurement_description(row):
        (assay_id, projsym, varname, descrip, units, cat1, cat2, cat3,
         intervention, intparm, appmeth, panelsym, datatype, sextested,
         nstrainstested, ageweeks) = row

        if sextested == 'f':
            sextested = 'female'
        elif sextested == 'm':
            sextested = 'male'
        elif sextested == 'fm':
            sextested = 'male and female'
        else:
            logger.warning("Unknown sex tested key: %s", sextested)
        description = "This is an assay of [" + descrip + "] shown as a [" + \
                      datatype + "] measured in [" + units + "]"

        if intervention is not None and intervention != "":
            description += " in response to [" + intervention + "]"
        if intparm is not None and intervention != "":
            description += \
                ". This represents the [" + intparm + \
                "] arm, using materials and methods that included [" +\
                appmeth + "]"

        description += \
            ".  The overall experiment is entitled [" + projsym + "].  "

        description += \
            "It was conducted in [" + sextested + "] mice at [" + \
            ageweeks + "] of age in" + " [" + nstrainstested + \
            "] different mouse strains. "
        description += "Keywords: " + cat1 + \
                       ((", " + cat2) if cat2.strip() is not "" else "") + \
                       ((", " + cat3) if cat3.strip() is not "" else "") + "."
        return description