예제 #1
0
def test_recobundles_flow():
    with TemporaryDirectory() as out_dir:
        data_path = get_fnames('fornix')

        fornix = load_tractogram(data_path, 'same',
                                 bbox_valid_check=False).streamlines

        f = Streamlines(fornix)
        f1 = f.copy()

        f2 = f1[:15].copy()
        f2._data += np.array([40, 0, 0])

        f.extend(f2)

        f2_path = pjoin(out_dir, "f2.trk")
        sft = StatefulTractogram(f2, data_path, Space.RASMM)
        save_tractogram(sft, f2_path, bbox_valid_check=False)

        f1_path = pjoin(out_dir, "f1.trk")
        sft = StatefulTractogram(f, data_path, Space.RASMM)
        save_tractogram(sft, f1_path, bbox_valid_check=False)

        rb_flow = RecoBundlesFlow(force=True)
        rb_flow.run(f1_path,
                    f2_path,
                    greater_than=0,
                    clust_thr=10,
                    model_clust_thr=5.,
                    reduction_thr=10,
                    out_dir=out_dir)

        labels = rb_flow.last_generated_outputs['out_recognized_labels']
        recog_trk = rb_flow.last_generated_outputs['out_recognized_transf']

        rec_bundle = load_tractogram(recog_trk, 'same',
                                     bbox_valid_check=False).streamlines
        npt.assert_equal(len(rec_bundle) == len(f2), True)

        label_flow = LabelsBundlesFlow(force=True)
        label_flow.run(f1_path, labels)

        recog_bundle = label_flow.last_generated_outputs['out_bundle']
        rec_bundle_org = load_tractogram(recog_bundle,
                                         'same',
                                         bbox_valid_check=False).streamlines

        BMD = BundleMinDistanceMetric()
        nb_pts = 20
        static = set_number_of_points(f2, nb_pts)
        moving = set_number_of_points(rec_bundle_org, nb_pts)

        BMD.setup(static, moving)
        x0 = np.array([0, 0, 0, 0, 0, 0, 1., 1., 1, 0, 0, 0])  # affine
        bmd_value = BMD.distance(x0.tolist())

        npt.assert_equal(bmd_value < 1, True)
예제 #2
0
def test_recobundles_flow():
    with TemporaryDirectory() as out_dir:
        data_path = get_fnames('fornix')
        streams, hdr = nib.trackvis.read(data_path)
        fornix = [s[0] for s in streams]

        f = Streamlines(fornix)
        f1 = f.copy()

        f2 = f1[:15].copy()
        f2._data += np.array([40, 0, 0])

        f.extend(f2)

        f2_path = pjoin(out_dir, "f2.trk")
        save_trk(f2_path, f2, affine=np.eye(4))

        f1_path = pjoin(out_dir, "f1.trk")
        save_trk(f1_path, f, affine=np.eye(4))

        rb_flow = RecoBundlesFlow(force=True)
        rb_flow.run(f1_path,
                    f2_path,
                    greater_than=0,
                    clust_thr=10,
                    model_clust_thr=5.,
                    reduction_thr=10,
                    out_dir=out_dir)

        labels = rb_flow.last_generated_outputs['out_recognized_labels']
        recog_trk = rb_flow.last_generated_outputs['out_recognized_transf']

        rec_bundle, _ = load_trk(recog_trk)
        npt.assert_equal(len(rec_bundle) == len(f2), True)

        label_flow = LabelsBundlesFlow(force=True)
        label_flow.run(f1_path, labels)

        recog_bundle = label_flow.last_generated_outputs['out_bundle']
        rec_bundle_org, _ = load_trk(recog_bundle)

        BMD = BundleMinDistanceMetric()
        nb_pts = 20
        static = set_number_of_points(f2, nb_pts)
        moving = set_number_of_points(rec_bundle_org, nb_pts)

        BMD.setup(static, moving)
        x0 = np.array([0, 0, 0, 0, 0, 0, 1., 1., 1, 0, 0, 0])  # affine
        bmd_value = BMD.distance(x0.tolist())

        npt.assert_equal(bmd_value < 1, True)
예제 #3
0
    def evaluate_results(self, model_bundle, pruned_streamlines, slr_select):
        """ Compare the similiarity between two given bundles, model bundle,
        and extracted bundle.

        Parameters
        ----------
        model_bundle : Streamlines
        pruned_streamlines : Streamlines
        slr_select : tuple
            Select the number of streamlines from model to neirborhood of
            model to perform the local SLR.

        Returns
        -------
        ba_value : float
            bundle adjacency value between model bundle and pruned bundle
        bmd_value : float
            bundle minimum distance value between model bundle and
            pruned bundle
        """

        spruned_streamlines = Streamlines(pruned_streamlines)
        recog_centroids = self._cluster_model_bundle(
            spruned_streamlines,
            model_clust_thr=1.25)
        mod_centroids = self._cluster_model_bundle(
            model_bundle,
            model_clust_thr=1.25)
        recog_centroids = Streamlines(recog_centroids)
        model_centroids = Streamlines(mod_centroids)
        ba_value = bundle_adjacency(set_number_of_points(recog_centroids, 20),
                                    set_number_of_points(model_centroids, 20),
                                    threshold=10)

        BMD = BundleMinDistanceMetric()
        static = select_random_set_of_streamlines(model_bundle,
                                                  slr_select[0])
        moving = select_random_set_of_streamlines(pruned_streamlines,
                                                  slr_select[1])
        nb_pts = 20
        static = set_number_of_points(static, nb_pts)
        moving = set_number_of_points(moving, nb_pts)

        BMD.setup(static, moving)
        x0 = np.array([0, 0, 0, 0, 0, 0, 1., 1., 1, 0, 0, 0])  # affine
        bmd_value = BMD.distance(x0.tolist())

        return ba_value, bmd_value
예제 #4
0
    def _register_neighb_to_model(self, model_bundle, neighb_streamlines,
                                  metric=None, x0=None, bounds=None,
                                  select_model=400, select_target=600,
                                  method='L-BFGS-B',
                                  nb_pts=20, num_threads=None):

        if self.verbose:
            print('# Local SLR of neighb_streamlines to model')
            t = time()

        if metric is None or metric == 'symmetric':
            metric = BundleMinDistanceMetric(num_threads=num_threads)
        if metric == 'asymmetric':
            metric = BundleMinDistanceAsymmetricMetric()
        if metric == 'diagonal':
            metric = BundleSumDistanceMatrixMetric()

        if x0 is None:
            x0 = 'similarity'

        if bounds is None:
            bounds = [(-30, 30), (-30, 30), (-30, 30),
                      (-45, 45), (-45, 45), (-45, 45), (0.8, 1.2)]

        # TODO this can be speeded up by using directly the centroids
        static = select_random_set_of_streamlines(model_bundle,
                                                  select_model, rng=self.rng)
        moving = select_random_set_of_streamlines(neighb_streamlines,
                                                  select_target, rng=self.rng)

        static = set_number_of_points(static, nb_pts)
        moving = set_number_of_points(moving, nb_pts)

        slr = StreamlineLinearRegistration(metric=metric, x0=x0,
                                           bounds=bounds,
                                           method=method)
        slm = slr.optimize(static, moving)

        transf_streamlines = neighb_streamlines.copy()
        transf_streamlines._data = apply_affine(
            slm.matrix, transf_streamlines._data)

        transf_matrix = slm.matrix
        slr_bmd = slm.fopt
        slr_iterations = slm.iterations

        if self.verbose:
            print(' Square-root of BMD is %.3f' % (np.sqrt(slr_bmd),))
            if slr_iterations is not None:
                print(' Number of iterations %d' % (slr_iterations,))
            print(' Matrix size {}'.format(slm.matrix.shape))
            original = np.get_printoptions()
            np.set_printoptions(3, suppress=True)
            print(transf_matrix)
            print(slm.xopt)
            np.set_printoptions(**original)

            print(' Duration %0.3f sec. \n' % (time() - t,))

        return transf_streamlines, slr_bmd
예제 #5
0
파일: bundles.py 프로젝트: grlee77/dipy
    def evaluate_results(self, model_bundle, pruned_streamlines, slr_select):
        """ Comapare the similiarity between two given bundles, model bundle,
        and extracted bundle.

        Parameters
        ----------
        model_bundle : Streamlines
        pruned_streamlines : Streamlines
        slr_select : tuple
            Select the number of streamlines from model to neirborhood of
            model to perform the local SLR.

        Returns
        -------
        ba_value : float
            bundle analytics value between model bundle and pruned bundle
        bmd_value : float
            bundle minimum distance value between model bundle and
            pruned bundle
        """

        spruned_streamlines = Streamlines(pruned_streamlines)
        recog_centroids = self._cluster_model_bundle(
            spruned_streamlines,
            model_clust_thr=1.25)
        mod_centroids = self._cluster_model_bundle(
            model_bundle,
            model_clust_thr=1.25)
        recog_centroids = Streamlines(recog_centroids)
        model_centroids = Streamlines(mod_centroids)
        ba_value = ba_analysis(recog_centroids, model_centroids, threshold=10)

        BMD = BundleMinDistanceMetric()
        static = select_random_set_of_streamlines(model_bundle,
                                                  slr_select[0])
        moving = select_random_set_of_streamlines(pruned_streamlines,
                                                  slr_select[1])
        nb_pts = 20
        static = set_number_of_points(static, nb_pts)
        moving = set_number_of_points(moving, nb_pts)

        BMD.setup(static, moving)
        x0 = np.array([0, 0, 0, 0, 0, 0, 1., 1., 1, 0, 0, 0])  # affine
        bmd_value = BMD.distance(x0.tolist())

        return ba_value, bmd_value
예제 #6
0
파일: test_segment.py 프로젝트: arokem/dipy
def test_recobundles_flow():
    with TemporaryDirectory() as out_dir:
        data_path = get_fnames('fornix')
        streams, hdr = nib.trackvis.read(data_path)
        fornix = [s[0] for s in streams]

        f = Streamlines(fornix)
        f1 = f.copy()

        f2 = f1[:15].copy()
        f2._data += np.array([40, 0, 0])

        f.extend(f2)

        f2_path = pjoin(out_dir, "f2.trk")
        save_trk(f2_path, f2, affine=np.eye(4))

        f1_path = pjoin(out_dir, "f1.trk")
        save_trk(f1_path, f, affine=np.eye(4))

        rb_flow = RecoBundlesFlow(force=True)
        rb_flow.run(f1_path, f2_path, greater_than=0, clust_thr=10,
                    model_clust_thr=5., reduction_thr=10, out_dir=out_dir)

        labels = rb_flow.last_generated_outputs['out_recognized_labels']
        recog_trk = rb_flow.last_generated_outputs['out_recognized_transf']

        rec_bundle, _ = load_trk(recog_trk)
        npt.assert_equal(len(rec_bundle) == len(f2), True)

        label_flow = LabelsBundlesFlow(force=True)
        label_flow.run(f1_path, labels)

        recog_bundle = label_flow.last_generated_outputs['out_bundle']
        rec_bundle_org, _ = load_trk(recog_bundle)

        BMD = BundleMinDistanceMetric()
        nb_pts = 20
        static = set_number_of_points(f2, nb_pts)
        moving = set_number_of_points(rec_bundle_org, nb_pts)

        BMD.setup(static, moving)
        x0 = np.array([0, 0, 0, 0, 0, 0, 1., 1., 1, 0, 0, 0])  # affine
        bmd_value = BMD.distance(x0.tolist())

        npt.assert_equal(bmd_value < 1, True)
예제 #7
0
def test_min_vs_min_fast_precision():

    static = fornix_streamlines()[:20]
    moving = fornix_streamlines()[:20]

    static = [s.astype('f8') for s in static]
    moving = [m.astype('f8') for m in moving]

    bmd = BundleMinDistanceMatrixMetric()
    bmd.setup(static, moving)

    bmdf = BundleMinDistanceMetric()
    bmdf.setup(static, moving)

    x_test = [0.01, 0, 0, 0, 0, 0]

    print(bmd.distance(x_test))
    print(bmdf.distance(x_test))
    assert_equal(bmd.distance(x_test), bmdf.distance(x_test))
예제 #8
0
def _affine_slr(sft_bundle, sft_centroid):
    x0 = np.zeros((7, ))
    bounds_dof = [(-10, 10), (-10, 10), (-10, 10), (-5, 5), (-5, 5), (-5, 5),
                  (0.95, 1.05)]
    metric = BundleMinDistanceMetric(num_threads=1)
    slr = StreamlineLinearRegistration(metric=metric,
                                       method="L-BFGS-B",
                                       bounds=bounds_dof,
                                       x0=x0,
                                       num_threads=1)
    tmp_bundle = set_number_of_points(sft_bundle.streamlines.copy(), 20)
    tmp_centroid = set_number_of_points(sft_centroid.streamlines.copy(), 20)
    slm = slr.optimize(tmp_bundle, tmp_centroid)
    sft_centroid.streamlines = transform_streamlines(sft_centroid.streamlines,
                                                     slm.matrix)
    return sft_centroid
예제 #9
0
def test_min_vs_min_fast_precision():

    static = fornix_streamlines()[:20]
    moving = fornix_streamlines()[:20]

    static = [s.astype('f8') for s in static]
    moving = [m.astype('f8') for m in moving]

    bmd = BundleMinDistanceMatrixMetric()
    bmd.setup(static, moving)

    bmdf = BundleMinDistanceMetric()
    bmdf.setup(static, moving)

    x_test = [0.01, 0, 0, 0, 0, 0]

    print(bmd.distance(x_test))
    print(bmdf.distance(x_test))
    assert_equal(bmd.distance(x_test), bmdf.distance(x_test))
예제 #10
0
    def _register_model_to_neighb(self,
                                  slr_num_thread=1,
                                  select_model=1000,
                                  select_target=1000,
                                  slr_transform_type='scaling'):
        """
        Parameters
        ----------
        slr_num_thread : int
            Number of threads for SLR.
            Should remain 1 for nearly all use-case.
        select_model : int
            Maximum number of clusters to select from the model.
        select_target : int
            Maximum number of clusters to select from the neighborhood.
        slr_transform_type : str
            Define the transformation for the local SLR.
            [translation, rigid, similarity, scaling].

        Returns
        -------
        transf_neighbor : list
            The neighborhood clusters transformed into model space.
        """
        possible_slr_transform_type = {
            'translation': 0,
            'rigid': 1,
            'similarity': 2,
            'scaling': 3
        }
        static = select_random_set_of_streamlines(self.model_centroids,
                                                  select_model, self.rng)
        moving = select_random_set_of_streamlines(self.neighb_centroids,
                                                  select_target, self.rng)

        # Tuple 0,1,2 are the min & max bound in x,y,z for translation
        # Tuple 3,4,5 are the min & max bound in x,y,z for rotation
        # Tuple 6,7,8 are the min & max bound in x,y,z for scaling
        # For uniform scaling (similarity), tuple #6 is enough
        bounds_dof = [(-20, 20), (-20, 20), (-20, 20), (-10, 10), (-10, 10),
                      (-10, 10), (0.8, 1.2), (0.8, 1.2), (0.8, 1.2)]
        metric = BundleMinDistanceMetric(num_threads=slr_num_thread)
        slr_transform_type_id = possible_slr_transform_type[slr_transform_type]
        if slr_transform_type_id >= 0:
            init_transfo_dof = np.zeros(3)
            slr = StreamlineLinearRegistration(metric=metric,
                                               method="Powell",
                                               x0=init_transfo_dof,
                                               bounds=bounds_dof[:3],
                                               num_threads=slr_num_thread)
            slm = slr.optimize(static, moving)

        if slr_transform_type_id >= 1:
            init_transfo_dof = np.zeros(6)
            init_transfo_dof[:3] = slm.xopt

            slr = StreamlineLinearRegistration(metric=metric,
                                               x0=init_transfo_dof,
                                               bounds=bounds_dof[:6],
                                               num_threads=slr_num_thread)
            slm = slr.optimize(static, moving)

        if slr_transform_type_id >= 2:
            if slr_transform_type_id == 2:
                init_transfo_dof = np.zeros(7)
                init_transfo_dof[:6] = slm.xopt
                init_transfo_dof[6] = 1.

                slr = StreamlineLinearRegistration(metric=metric,
                                                   x0=init_transfo_dof,
                                                   bounds=bounds_dof[:7],
                                                   num_threads=slr_num_thread)
                slm = slr.optimize(static, moving)

            else:
                init_transfo_dof = np.zeros(9)
                init_transfo_dof[:6] = slm.xopt[:6]
                init_transfo_dof[6:] = np.array((slm.xopt[6], ) * 3)

                slr = StreamlineLinearRegistration(metric=metric,
                                                   x0=init_transfo_dof,
                                                   bounds=bounds_dof[:9],
                                                   num_threads=slr_num_thread)
                slm = slr.optimize(static, moving)
        self.model_centroids = transform_streamlines(self.model_centroids,
                                                     np.linalg.inv(slm.matrix))