예제 #1
0
def test_piesno():
    # Values taken from hispeed.OptimalPIESNO with the test data
    # in the package computed in matlab
    test_piesno_data = nib.load(dipy.data.get_data("test_piesno")).get_data()
    sigma = piesno(test_piesno_data, N=8, alpha=0.01, l=1, eps=1e-10,
                   return_mask=False)
    assert_almost_equal(sigma, 0.010749458025559)

    noise1 = (np.random.randn(100, 100, 100) * 50) + 10
    noise2 = (np.random.randn(100, 100, 100) * 50) + 10
    rician_noise = np.sqrt(noise1**2 + noise2**2)
    sigma, mask = piesno(rician_noise, N=1, alpha=0.01, l=1, eps=1e-10,
                         return_mask=True)

    # less than 3% of error?
    assert_(np.abs(sigma - 50) / sigma < 0.03)

    # Test using the median as the initial estimation
    initial_estimation = (np.median(sigma) /
                          np.sqrt(2 * _inv_nchi_cdf(1, 1, 0.5)))

    sigma, mask = _piesno_3D(rician_noise, N=1, alpha=0.01, l=1, eps=1e-10,
                             return_mask=True,
                             initial_estimation=initial_estimation)

    assert_(np.abs(sigma - 50) / sigma < 0.03)

    sigma = _piesno_3D(rician_noise, N=1, alpha=0.01, l=1, eps=1e-10,
                       return_mask=False,
                       initial_estimation=initial_estimation)
    assert_(np.abs(sigma - 50) / sigma < 0.03)

    sigma = _piesno_3D(np.zeros_like(rician_noise), N=1, alpha=0.01, l=1,
                       eps=1e-10, return_mask=False,
                       initial_estimation=initial_estimation)

    assert_(np.all(sigma == 0))

    sigma, mask = _piesno_3D(np.zeros_like(rician_noise), N=1, alpha=0.01, l=1,
                             eps=1e-10, return_mask=True,
                             initial_estimation=initial_estimation)

    assert_(np.all(sigma == 0))
    assert_(np.all(mask == 0))

    # Check if no noise points found in array it exits
    sigma = _piesno_3D(1000*np.ones_like(rician_noise), N=1, alpha=0.01, l=1,
                       eps=1e-10, return_mask=False, initial_estimation=10)
    assert_(np.all(sigma == 10))
예제 #2
0
def test_piesno():
    # Values taken from hispeed.OptimalPIESNO with the test data
    # in the package computed in matlab
    test_piesno_data = nib.load(dpd.get_fnames("test_piesno")).get_data()
    sigma = piesno(test_piesno_data, N=8, alpha=0.01, l=1, eps=1e-10,
                   return_mask=False)
    assert_almost_equal(sigma, 0.010749458025559)

    noise1 = (np.random.randn(100, 100, 100) * 50) + 10
    noise2 = (np.random.randn(100, 100, 100) * 50) + 10
    rician_noise = np.sqrt(noise1**2 + noise2**2)
    sigma, mask = piesno(rician_noise, N=1, alpha=0.01, l=1, eps=1e-10,
                         return_mask=True)

    # less than 3% of error?
    assert_(np.abs(sigma - 50) / sigma < 0.03)

    # Test using the median as the initial estimation
    initial_estimation = (np.median(sigma) /
                          np.sqrt(2 * _inv_nchi_cdf(1, 1, 0.5)))

    sigma, mask = _piesno_3D(rician_noise, N=1, alpha=0.01, l=1, eps=1e-10,
                             return_mask=True,
                             initial_estimation=initial_estimation)

    assert_(np.abs(sigma - 50) / sigma < 0.03)

    sigma = _piesno_3D(rician_noise, N=1, alpha=0.01, l=1, eps=1e-10,
                       return_mask=False,
                       initial_estimation=initial_estimation)
    assert_(np.abs(sigma - 50) / sigma < 0.03)

    sigma = _piesno_3D(np.zeros_like(rician_noise), N=1, alpha=0.01, l=1,
                       eps=1e-10, return_mask=False,
                       initial_estimation=initial_estimation)

    assert_(np.all(sigma == 0))

    sigma, mask = _piesno_3D(np.zeros_like(rician_noise), N=1, alpha=0.01, l=1,
                             eps=1e-10, return_mask=True,
                             initial_estimation=initial_estimation)

    assert_(np.all(sigma == 0))
    assert_(np.all(mask == 0))

    # Check if no noise points found in array it exits
    sigma = _piesno_3D(1000*np.ones_like(rician_noise), N=1, alpha=0.01, l=1,
                       eps=1e-10, return_mask=False, initial_estimation=10)
    assert_(np.all(sigma == 10))
예제 #3
0
def test_piesno():
    # Values taken from hispeed.OptimalPIESNO with the test data
    # in the package computed in matlab
    test_piesno_data = nib.load(dipy.data.get_data("test_piesno")).get_data()
    sigma = piesno(test_piesno_data, N=8, alpha=0.01, l=1, eps=1e-10, return_mask=False)
    assert_almost_equal(sigma, 0.010749458025559)

    noise1 = (np.random.randn(100, 100, 100) * 50) + 10
    noise2 = (np.random.randn(100, 100, 100) * 50) + 10
    rician_noise = np.sqrt(noise1**2 + noise2**2)
    sigma, mask = piesno(rician_noise, N=1, alpha=0.01, l=1, eps=1e-10, return_mask=True)

    # less than 3% of error?
    assert_almost_equal(np.abs(sigma - 50) / sigma < 0.03, True)

    # Test using the median as the initial estimation
    initial_estimation = np.median(sigma) / np.sqrt(2 * _inv_nchi_cdf(1, 1, 0.5))
    sigma, mask = _piesno_3D(rician_noise, N=1, alpha=0.01, l=1, eps=1e-10, return_mask=True,
                             initial_estimation=initial_estimation)
    assert_almost_equal(np.abs(sigma - 50) / sigma < 0.03, True)