예제 #1
0
def test_csd_xval():
    # First, let's see that it works with some data:
    data = nib.load(fdata).get_data()[1:3, 1:3, 1:3]  # Make it *small*
    gtab = gt.gradient_table(fbval, fbvec)
    S0 = np.mean(data[..., gtab.b0s_mask])
    response = ([0.0015, 0.0003, 0.0001], S0)
    csdm = csd.ConstrainedSphericalDeconvModel(gtab, response)
    kf_xval = xval.kfold_xval(csdm, data, 2, response, sh_order=2)

    # In simulation, it should work rather well (high COD):
    psphere = dpd.get_sphere('symmetric362')
    bvecs = np.concatenate(([[0, 0, 0]], psphere.vertices))
    bvals = np.zeros(len(bvecs)) + 1000
    bvals[0] = 0
    gtab = gt.gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0001], [0.0015, 0.0003, 0.0003]))
    mevecs = [
        np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]),
        np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]])
    ]
    S0 = 100
    S = sims.single_tensor(gtab, S0, mevals[0], mevecs[0], snr=None)
    sm = csd.ConstrainedSphericalDeconvModel(gtab, response)
    smfit = sm.fit(S)
    np.random.seed(12345)
    response = ([0.0015, 0.0003, 0.0001], S0)
    kf_xval = xval.kfold_xval(sm, S, 2, response, sh_order=2)
    # Because of the regularization, COD is not going to be perfect here:
    cod = xval.coeff_of_determination(S, kf_xval)
    # We'll just test for regressions:
    csd_cod = 97  # pre-computed by hand for this random seed

    # We're going to be really lenient here:
    npt.assert_array_almost_equal(np.round(cod), csd_cod)
예제 #2
0
def _fit(gtab, data, mask, response=None, sh_order=None, lambda_=1, tau=0.1):
    """
    Helper function that does the core of fitting a model to data.
    """
    if sh_order is None:
        ndata = np.sum(~gtab.b0s_mask)
        # See dipy.reconst.shm.calculate_max_order
        L1 = (-3 + np.sqrt(1 + 8 * ndata)) / 2.0
        sh_order = int(L1)
        if np.mod(sh_order, 2) != 0:
            sh_order = sh_order - 1
        if sh_order > 8:
            sh_order = 8

    if response is None:
        response, ratio = csd.auto_response(gtab,
                                            data,
                                            roi_radius=10,
                                            fa_thr=0.7)

    csdmodel = csd.ConstrainedSphericalDeconvModel(gtab,
                                                   response,
                                                   sh_order=sh_order)
    csdfit = csdmodel.fit(data, mask=mask)

    return csdfit
예제 #3
0
파일: csd.py 프로젝트: jhlegarreta/pyAFQ
def fit_csd(data_files,
            bval_files,
            bvec_files,
            mask=None,
            response=None,
            sh_order=8,
            lambda_=1,
            tau=0.1,
            out_dir=None):
    """
    Fit the CSD model and save file with SH coefficients.

    Parameters
    ----------
    data_files : str or list
        Files containing DWI data. If this is a str, that's the full path to a
        single file. If it's a list, each entry is a full path.
    bval_files : str or list
        Equivalent to `data_files`.
    bvec_files : str or list
        Equivalent to `data_files`.
    mask : ndarray, optional
        Binary mask, set to True or 1 in voxels to be processed.
        Default: Process all voxels.
    out_dir : str, optional
        A full path to a directory to store the maps that get computed.
        Default: file with coefficients gets stored in the same directory as
        the first DWI file in `data_files`.

    Returns
    -------
    fname : the full path to the file containing the SH coefficients.
    """
    img, data, gtab, mask = ut.prepare_data(data_files, bval_files, bvec_files)
    if response is None:
        response, ratio = csd.auto_response(gtab,
                                            data,
                                            roi_radius=10,
                                            fa_thr=0.7)

    csdmodel = csd.ConstrainedSphericalDeconvModel(gtab,
                                                   response,
                                                   sh_order=sh_order)
    csdfit = csdmodel.fit(data, mask=mask)
    if out_dir is None:
        out_dir = op.join(op.split(data_files)[0], 'dki')

    if not op.exists(out_dir):
        os.makedirs(out_dir)

    aff = img.affine
    fname = op.join(out_dir, 'csd_sh_coeff.nii.gz')
    nib.save(nib.Nifti1Image(csdfit.shm_coeff, aff), fname)
    return fname
예제 #4
0
def test_csd_xval():
    # First, let's see that it works with some data:
    data = load_nifti_data(fdata)[1:3, 1:3, 1:3]  # Make it *small*
    gtab = gt.gradient_table(fbval, fbvec)
    S0 = np.mean(data[..., gtab.b0s_mask])
    response = ([0.0015, 0.0003, 0.0001], S0)

    # In simulation, it should work rather well (high COD):
    psphere = dpd.get_sphere('symmetric362')
    bvecs = np.concatenate(([[0, 0, 0]], psphere.vertices))
    bvals = np.zeros(len(bvecs)) + 1000
    bvals[0] = 0
    gtab = gt.gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0001], [0.0015, 0.0003, 0.0003]))
    mevecs = [
        np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]),
        np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]])
    ]
    S0 = 100
    S = sims.single_tensor(gtab, S0, mevals[0], mevecs[0], snr=None)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        sm = csd.ConstrainedSphericalDeconvModel(gtab, response)
    np.random.seed(12345)
    response = ([0.0015, 0.0003, 0.0001], S0)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        kf_xval = xval.kfold_xval(sm, S, 2, response, sh_order=2)
    # Because of the regularization, COD is not going to be perfect here:
    cod = xval.coeff_of_determination(S, kf_xval)
    # We'll just test for regressions:
    csd_cod = 97  # pre-computed by hand for this random seed

    # We're going to be really lenient here:
    npt.assert_array_almost_equal(np.round(cod), csd_cod)
    # Test for sD data with more than one voxel for use of a mask:
    S = np.array([[S, S], [S, S]])
    mask = np.ones(S.shape[:-1], dtype=bool)
    mask[1, 1] = 0
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        kf_xval = xval.kfold_xval(sm, S, 2, response, sh_order=2, mask=mask)

    cod = xval.coeff_of_determination(S, kf_xval)
    npt.assert_array_almost_equal(np.round(cod[0]), csd_cod)
예제 #5
0
def _fit(gtab, data, mask, response=None, sh_order=8,
         lambda_=1, tau=0.1):
    """
    Helper function that does the core of fitting a model to data.
    """
    if response is None:
        response, ratio = csd.auto_response(gtab, data, roi_radius=10,
                                            fa_thr=0.7)

    csdmodel = csd.ConstrainedSphericalDeconvModel(gtab, response,
                                                   sh_order=sh_order)
    csdfit = csdmodel.fit(data, mask=mask)

    return csdfit
예제 #6
0
dpd.fetch_stanford_hardi()
img, gtab = dpd.read_stanford_hardi()
data = img.get_data()

cc_vox = data[40, 70, 38]
cso_vox = data[30, 76, 38]
"""

We initialize each kind of model:

"""

dti_model = dti.TensorModel(gtab)
response, ratio = csd.auto_response(gtab, data, roi_radius=10, fa_thr=0.7)
csd_model = csd.ConstrainedSphericalDeconvModel(gtab, response)
"""

Next, we perform cross-validation for each kind of model, comparing model
predictions to the diffusion MRI data in each one of these voxels.

Note that we use 2-fold cross-validation, which means that in each iteration,
the model will be fit to half of the data, and used to predict the other half.

"""

dti_cc = xval.kfold_xval(dti_model, cc_vox, 2)
csd_cc = xval.kfold_xval(csd_model, cc_vox, 2, response)
dti_cso = xval.kfold_xval(dti_model, cso_vox, 2)
csd_cso = xval.kfold_xval(csd_model, cso_vox, 2, response)
"""