def test_mapmri_isotropic_design_matrix_separability(radial_order=6): gtab = get_gtab_taiwan_dsi() tau = 1 / (4 * np.pi ** 2) qvals = np.sqrt(gtab.bvals / tau) / (2 * np.pi) q = gtab.bvecs * qvals[:, None] mu = 0.0003 # random value M = mapmri.mapmri_isotropic_phi_matrix(radial_order, mu, q) M_independent = mapmri.mapmri_isotropic_M_mu_independent(radial_order, q) M_dependent = mapmri.mapmri_isotropic_M_mu_dependent(radial_order, mu, qvals) M_reconstructed = M_independent * M_dependent assert_array_almost_equal(M, M_reconstructed)
def test_mapmri_isotropic_design_matrix_separability(radial_order=6): gtab = get_gtab_taiwan_dsi() tau = 1 / (4 * np.pi**2) qvals = np.sqrt(gtab.bvals / tau) / (2 * np.pi) q = gtab.bvecs * qvals[:, None] mu = 0.0003 # random value M = mapmri.mapmri_isotropic_phi_matrix(radial_order, mu, q) M_independent = mapmri.mapmri_isotropic_M_mu_independent(radial_order, q) M_dependent = mapmri.mapmri_isotropic_M_mu_dependent( radial_order, mu, qvals) M_reconstructed = M_independent * M_dependent assert_array_almost_equal(M, M_reconstructed)
def test_mapmri_isotropic_design_matrix_separability(radial_order=6): gtab = get_gtab_taiwan_dsi() tau = 1 / (4 * np.pi**2) qvals = np.sqrt(gtab.bvals / tau) / (2 * np.pi) q = gtab.bvecs * qvals[:, None] mu = 0.0003 # random value with warnings.catch_warnings(): warnings.filterwarnings("ignore", message=descoteaux07_legacy_msg, category=PendingDeprecationWarning) M = mapmri.mapmri_isotropic_phi_matrix(radial_order, mu, q) M_independent = mapmri.mapmri_isotropic_M_mu_independent( radial_order, q) M_dependent = mapmri.mapmri_isotropic_M_mu_dependent( radial_order, mu, qvals) M_reconstructed = M_independent * M_dependent assert_array_almost_equal(M, M_reconstructed)