예제 #1
0
def dki_signal(gtab, dt, kt, S0=150, snr=None):
    r""" Simulated signal based on the diffusion and diffusion kurtosis
    tensors of a single voxel. Simulations are preformed assuming the DKI
    model.

    Parameters
    ----------
    gtab : GradientTable
        Measurement directions.
    dt : (6,) ndarray
        Elements of the diffusion tensor.
    kt : (15, ) ndarray
        Elements of the diffusion kurtosis tensor.
    S0 : float (optional)
        Strength of signal in the presence of no diffusion gradient.
    snr : float (optional)
        Signal to noise ratio, assuming Rician noise.  None implies no noise.

    Returns
    -------
    S : (N,) ndarray
        Simulated signal based on the DKI model:

    .. math::

        S=S_{0}e^{-bD+\frac{1}{6}b^{2}D^{2}K}

    References
    ----------
    .. [1] R. Neto Henriques et al., "Exploring the 3D geometry of the
           diffusion kurtosis tensor - Impact on the development of robust
           tractography procedures and novel biomarkers", NeuroImage (2015)
           111, 85-99.

    """
    dt = np.array(dt)
    kt = np.array(kt)

    A = dki_design_matrix(gtab)

    # define vector of DKI parameters
    MD = (dt[0] + dt[2] + dt[5]) / 3
    X = np.concatenate((dt, kt * MD * MD, np.array([-np.log(S0)])), axis=0)

    # Compute signals based on the DKI model
    S = np.exp(dot(A, X))

    S = add_noise(S, snr, S0)

    return S
예제 #2
0
파일: voxel.py 프로젝트: hassemlal/dipy
def DKI_signal(gtab, dt, kt, S0=150, snr=None):
    r""" Simulated signal based on the diffusion and diffusion kurtosis
    tensors of a single voxel. Simulations are preformed assuming the DKI
    model.

    Parameters
    -----------
    gtab : GradientTable
        Measurement directions.
    dt : (6,) ndarray
        Elements of the diffusion tensor.
    kt : (15, ) ndarray
        Elements of the diffusion kurtosis tensor.
    S0 : float (optional)
        Strength of signal in the presence of no diffusion gradient.
    snr : float (optional)
        Signal to noise ratio, assuming Rician noise.  None implies no noise.

    Returns
    --------
    S : (N,) ndarray
        Simulated signal based on the DKI model:

    .. math::

        S=S_{0}e^{-bD+\frac{1}{6}b^{2}D^{2}K}

    References
    ----------
    .. [1] R. Neto Henriques et al., "Exploring the 3D geometry of the
           diffusion kurtosis tensor - Impact on the development of robust
           tractography procedures and novel biomarkers", NeuroImage (2015)
           111, 85-99.
    """
    dt = np.array(dt)
    kt = np.array(kt)

    A = dki_design_matrix(gtab)

    # define vector of DKI parameters
    MD = (dt[0] + dt[2] + dt[5]) / 3
    X = np.concatenate((dt, kt*MD*MD, np.array([np.log(S0)])), axis=0)

    # Compute signals based on the DKI model
    S = np.exp(dot(A, X))

    S = add_noise(S, snr, S0)

    return S