def test_LSCv2(verbose=False): xyz1 = np.array([[1, 0, 0], [2, 0, 0], [3, 0, 0]], dtype='float32') xyz2 = np.array([[1, 0, 0], [1, 2, 0], [1, 3, 0]], dtype='float32') xyz3 = np.array([[1.1, 0, 0], [1, 2, 0], [1, 3, 0]], dtype='float32') xyz4 = np.array([[1, 0, 0], [2.1, 0, 0], [3, 0, 0]], dtype='float32') xyz5 = np.array([[100, 0, 0], [200, 0, 0], [300, 0, 0]], dtype='float32') xyz6 = np.array([[0, 20, 0], [0, 40, 0], [300, 50, 0]], dtype='float32') T = [xyz1, xyz2, xyz3, xyz4, xyz5, xyz6] pf.local_skeleton_clustering(T, 0.2) pf.local_skeleton_clustering_3pts(T, 0.2) for i in range(40): xyz = np.random.rand(3, 3).astype('f4') T.append(xyz) from time import time t1 = time() C3 = pf.local_skeleton_clustering(T, .5) t2 = time() if verbose: print(t2 - t1) print(len(C3)) t1 = time() C4 = pf.local_skeleton_clustering_3pts(T, .5) t2 = time() if verbose: print(t2 - t1) print(len(C4)) for c in C3: assert_equal(np.sum(C3[c]['hidden'] - C4[c]['hidden']), 0) T2 = [] for i in range(10**4): xyz = np.random.rand(10, 3).astype('f4') T2.append(xyz) t1 = time() C5 = pf.local_skeleton_clustering(T2, .5) t2 = time() if verbose: print(t2 - t1) print(len(C5)) fname = get_fnames('fornix') fornix = load_tractogram(fname, 'same', bbox_valid_check=False).streamlines T3 = set_number_of_points(fornix, 6) if verbose: print('lenT3', len(T3)) C = pf.local_skeleton_clustering(T3, 10.) if verbose: print('lenC', len(C)) """
def test_LSCv2(): xyz1=np.array([[1,0,0],[2,0,0],[3,0,0]],dtype='float32') xyz2=np.array([[1,0,0],[1,2,0],[1,3,0]],dtype='float32') xyz3=np.array([[1.1,0,0],[1,2,0],[1,3,0]],dtype='float32') xyz4=np.array([[1,0,0],[2.1,0,0],[3,0,0]],dtype='float32') xyz5=np.array([[100,0,0],[200,0,0],[300,0,0]],dtype='float32') xyz6=np.array([[0,20,0],[0,40,0],[300,50,0]],dtype='float32') T=[xyz1,xyz2,xyz3,xyz4,xyz5,xyz6] C=pf.local_skeleton_clustering(T,0.2) #print C #print len(C) C2=pf.local_skeleton_clustering_3pts(T,0.2) #print C2 #print len(C2) #""" for i in range(40): xyz=np.random.rand(3,3).astype('f4') T.append(xyz) from time import time t1=time() C3=pf.local_skeleton_clustering(T,.5) t2=time() print t2-t1 print len(C3) t1=time() C4=pf.local_skeleton_clustering_3pts(T,.5) t2=time() print t2-t1 print len(C4) for c in C3: assert_equal(np.sum(C3[c]['hidden']-C4[c]['hidden']),0) T2=[] for i in range(10**4): xyz=np.random.rand(10,3).astype('f4') T2.append(xyz) t1=time() C5=pf.local_skeleton_clustering(T2,.5) t2=time() print t2-t1 print len(C5) from dipy.data import get_data from nibabel import trackvis as tv try: from dipy.viz import fvtk except ImportError, e: raise nose.plugins.skip.SkipTest( 'Fails to import dipy.viz due to %s' % str(e))
def test_LSCv2(): xyz1 = np.array([[1, 0, 0], [2, 0, 0], [3, 0, 0]], dtype='float32') xyz2 = np.array([[1, 0, 0], [1, 2, 0], [1, 3, 0]], dtype='float32') xyz3 = np.array([[1.1, 0, 0], [1, 2, 0], [1, 3, 0]], dtype='float32') xyz4 = np.array([[1, 0, 0], [2.1, 0, 0], [3, 0, 0]], dtype='float32') xyz5 = np.array([[100, 0, 0], [200, 0, 0], [300, 0, 0]], dtype='float32') xyz6 = np.array([[0, 20, 0], [0, 40, 0], [300, 50, 0]], dtype='float32') T = [xyz1, xyz2, xyz3, xyz4, xyz5, xyz6] C = pf.local_skeleton_clustering(T, 0.2) #print C #print len(C) C2 = pf.local_skeleton_clustering_3pts(T, 0.2) #print C2 #print len(C2) #""" for i in range(40): xyz = np.random.rand(3, 3).astype('f4') T.append(xyz) from time import time t1 = time() C3 = pf.local_skeleton_clustering(T, .5) t2 = time() print t2 - t1 print len(C3) t1 = time() C4 = pf.local_skeleton_clustering_3pts(T, .5) t2 = time() print t2 - t1 print len(C4) for c in C3: assert_equal(np.sum(C3[c]['hidden'] - C4[c]['hidden']), 0) T2 = [] for i in range(10**4): xyz = np.random.rand(10, 3).astype('f4') T2.append(xyz) t1 = time() C5 = pf.local_skeleton_clustering(T2, .5) t2 = time() print t2 - t1 print len(C5) from dipy.data import get_data from nibabel import trackvis as tv try: from dipy.viz import fvtk except ImportError, e: raise nose.plugins.skip.SkipTest('Fails to import dipy.viz due to %s' % str(e))
def test_LSCv2(): xyz1 = np.array([[1, 0, 0], [2, 0, 0], [3, 0, 0]], dtype='float32') xyz2 = np.array([[1, 0, 0], [1, 2, 0], [1, 3, 0]], dtype='float32') xyz3 = np.array([[1.1, 0, 0], [1, 2, 0], [1, 3, 0]], dtype='float32') xyz4 = np.array([[1, 0, 0], [2.1, 0, 0], [3, 0, 0]], dtype='float32') xyz5 = np.array([[100, 0, 0], [200, 0, 0], [300, 0, 0]], dtype='float32') xyz6 = np.array([[0, 20, 0], [0, 40, 0], [300, 50, 0]], dtype='float32') T = [xyz1, xyz2, xyz3, xyz4, xyz5, xyz6] C = pf.local_skeleton_clustering(T, 0.2) # print C # print len(C) C2 = pf.local_skeleton_clustering_3pts(T, 0.2) # print C2 # print len(C2) # """ for i in range(40): xyz = np.random.rand(3, 3).astype('f4') T.append(xyz) from time import time t1 = time() C3 = pf.local_skeleton_clustering(T, .5) t2 = time() print(t2 - t1) print(len(C3)) t1 = time() C4 = pf.local_skeleton_clustering_3pts(T, .5) t2 = time() print(t2 - t1) print(len(C4)) for c in C3: assert_equal(np.sum(C3[c]['hidden'] - C4[c]['hidden']), 0) T2 = [] for i in range(10**4): xyz = np.random.rand(10, 3).astype('f4') T2.append(xyz) t1 = time() C5 = pf.local_skeleton_clustering(T2, .5) t2 = time() print(t2 - t1) print(len(C5)) from dipy.data import get_data from nibabel import trackvis as tv try: from dipy.viz import window, actor except ImportError as e: raise nose.plugins.skip.SkipTest('Fails to import dipy.viz due to %s' % str(e)) streams, hdr = tv.read(get_data('fornix')) T3 = [tm.downsample(s[0], 6) for s in streams] print('lenT3', len(T3)) C = pf.local_skeleton_clustering(T3, 10.) print('lenC', len(C)) """
def test_LSCv2(): xyz1 = np.array([[1, 0, 0], [2, 0, 0], [3, 0, 0]], dtype='float32') xyz2 = np.array([[1, 0, 0], [1, 2, 0], [1, 3, 0]], dtype='float32') xyz3 = np.array([[1.1, 0, 0], [1, 2, 0], [1, 3, 0]], dtype='float32') xyz4 = np.array([[1, 0, 0], [2.1, 0, 0], [3, 0, 0]], dtype='float32') xyz5 = np.array([[100, 0, 0], [200, 0, 0], [300, 0, 0]], dtype='float32') xyz6 = np.array([[0, 20, 0], [0, 40, 0], [300, 50, 0]], dtype='float32') T = [xyz1, xyz2, xyz3, xyz4, xyz5, xyz6] pf.local_skeleton_clustering(T, 0.2) # print C # print len(C) pf.local_skeleton_clustering_3pts(T, 0.2) # print C2 # print len(C2) # """ for i in range(40): xyz = np.random.rand(3, 3).astype('f4') T.append(xyz) from time import time t1 = time() C3 = pf.local_skeleton_clustering(T, .5) t2 = time() print(t2-t1) print(len(C3)) t1 = time() C4 = pf.local_skeleton_clustering_3pts(T, .5) t2 = time() print(t2-t1) print(len(C4)) for c in C3: assert_equal(np.sum(C3[c]['hidden']-C4[c]['hidden']), 0) T2 = [] for i in range(10**4): xyz = np.random.rand(10, 3).astype('f4') T2.append(xyz) t1 = time() C5 = pf.local_skeleton_clustering(T2, .5) t2 = time() print(t2-t1) print(len(C5)) from dipy.data import get_fnames from nibabel import trackvis as tv streams, hdr = tv.read(get_fnames('fornix')) T3 = [tm.downsample(s[0], 6) for s in streams] print('lenT3', len(T3)) C = pf.local_skeleton_clustering(T3, 10.) print('lenC', len(C)) """