예제 #1
0
def extract_features(db,
                     net,
                     trfs,
                     pooling='mean',
                     gemp=3,
                     detailed=False,
                     whiten=None,
                     threads=8,
                     batch_size=16,
                     output=None,
                     dbg=()):
    """ Extract features from trained model (network) on a given dataset.
    """
    print("\n>> Extracting features...")
    try:
        query_db = db.get_query_db()
    except NotImplementedError:
        query_db = None

    # extract DB feats
    bdescs = []
    qdescs = []

    trfs_list = [trfs] if isinstance(trfs, str) else trfs

    for trfs in trfs_list:
        kw = dict(iscuda=net.iscuda,
                  threads=threads,
                  batch_size=batch_size,
                  same_size='Pad' in trfs or 'Crop' in trfs)
        bdescs.append(
            test.extract_image_features(db, trfs, net, desc="DB", **kw))

        # extract query feats
        if query_db is not None:
            qdescs.append(
                bdescs[-1] if db is query_db else test.extract_image_features(
                    query_db, trfs, net, desc="query", **kw))

    # pool from multiple transforms (scales)
    bdescs = tonumpy(F.normalize(pool(bdescs, pooling, gemp), p=2, dim=1))
    if query_db is not None:
        qdescs = tonumpy(F.normalize(pool(qdescs, pooling, gemp), p=2, dim=1))

    if whiten is not None:
        bdescs = common.whiten_features(bdescs, net.pca, **whiten)
        if query_db is not None:
            qdescs = common.whiten_features(qdescs, net.pca, **whiten)

    mkdir(output, isfile=True)
    if query_db is db or query_db is None:
        np.save(output, bdescs)
    else:
        o = osp.splitext(output)
        np.save(o[0] + '.qdescs' + o[1], qdescs)
        np.save(o[0] + '.dbdescs' + o[1], bdescs)
    print('Features extracted.')
예제 #2
0
def eval_model(db,
               net,
               trfs,
               pooling='mean',
               gemp=3,
               detailed=False,
               whiten=None,
               aqe=None,
               adba=None,
               threads=8,
               batch_size=16,
               save_feats=None,
               load_feats=None,
               dbg=()):
    """ Evaluate a trained model (network) on a given dataset.
    The dataset is supposed to contain the evaluation code.
    """
    print("\n>> Evaluation...")
    query_db = db.get_query_db()

    # extract DB feats
    bdescs = []
    qdescs = []

    if not load_feats:
        trfs_list = [trfs] if isinstance(trfs, str) else trfs

        for trfs in trfs_list:
            kw = dict(iscuda=net.iscuda,
                      threads=threads,
                      batch_size=batch_size,
                      same_size='Pad' in trfs or 'Crop' in trfs)
            bdescs.append(
                extract_image_features(db, trfs, net, desc="DB", **kw))

            # extract query feats
            qdescs.append(
                bdescs[-1] if db is query_db else extract_image_features(
                    query_db, trfs, net, desc="query", **kw))

        # pool from multiple transforms (scales)
        bdescs = F.normalize(pool(bdescs, pooling, gemp), p=2, dim=1)
        qdescs = F.normalize(pool(qdescs, pooling, gemp), p=2, dim=1)
    else:
        bdescs = np.load(os.path.join(load_feats, 'feats.bdescs.npy'))
        if query_db is not db:
            qdescs = np.load(os.path.join(load_feats, 'feats.qdescs.npy'))
        else:
            qdescs = bdescs

    if save_feats:
        mkdir(save_feats)
        np.save(os.path.join(save_feats, 'feats.bdescs.npy'),
                bdescs.cpu().numpy())
        if query_db is not db:
            np.save(os.path.join(save_feats, 'feats.qdescs.npy'),
                    qdescs.cpu().numpy())

    if whiten is not None:
        bdescs = common.whiten_features(tonumpy(bdescs), net.pca, **whiten)
        qdescs = common.whiten_features(tonumpy(qdescs), net.pca, **whiten)

    if adba is not None:
        bdescs = expand_descriptors(bdescs, **args.adba)
    if aqe is not None:
        qdescs = expand_descriptors(qdescs, db=bdescs, **args.aqe)

    scores = matmul(qdescs, bdescs)

    del bdescs
    del qdescs

    res = {}

    try:
        aps = [
            db.eval_query_AP(q, s)
            for q, s in enumerate(tqdm.tqdm(scores, desc='AP'))
        ]
        if not isinstance(aps[0], dict):
            aps = [float(e) for e in aps]
            if detailed:
                res['APs'] = aps
            # Queries with no relevants have an AP of -1
            res['mAP'] = float(np.mean([e for e in aps if e >= 0]))
        else:
            modes = aps[0].keys()
            for mode in modes:
                apst = [float(e[mode]) for e in aps]
                if detailed:
                    res['APs' + '-' + mode] = apst
                # Queries with no relevants have an AP of -1
                res['mAP' + '-' + mode] = float(
                    np.mean([e for e in apst if e >= 0]))
    except NotImplementedError:
        print(" AP not implemented!")

    try:
        tops = [
            db.eval_query_top(q, s)
            for q, s in enumerate(tqdm.tqdm(scores, desc='top1'))
        ]
        if detailed:
            res['tops'] = tops
        for k in tops[0]:
            res['top%d' % k] = float(np.mean([top[k] for top in tops]))
    except NotImplementedError:
        pass

    return res
예제 #3
0
    else:
        net.pca = None
        args.whiten = None

    # Evaluate
    res = eval_model(dataset,
                     net,
                     args.trfs,
                     pooling=args.pooling,
                     gemp=args.gemp,
                     detailed=args.detailed,
                     threads=args.threads,
                     dbg=args.dbg,
                     whiten=args.whiten,
                     aqe=args.aqe,
                     adba=args.adba,
                     save_feats=args.save_feats,
                     load_feats=args.load_feats)
    print(' * ' + '\n * '.join(['%s = %g' % p for p in res.items()]))

    if args.out_json:
        # write to file
        try:
            data = json.load(open(args.out_json))
        except IOError:
            data = {}
        data[args.dataset] = res
        mkdir(args.out_json)
        open(args.out_json, 'w').write(json.dumps(data, indent=1))
        print("saved to " + args.out_json)
예제 #4
0
def eval_model(db, net, trfs, pooling='mean', gemp=3, detailed=False, whiten=None,
               aqe=None, adba=None, threads=8, batch_size=16, save_feats=None,
               load_feats=None, load_distractors=None, dbg=()):
    """ Evaluate a trained model (network) on a given dataset.
    The dataset is supposed to contain the evaluation code.
    """
    print("\n>> Evaluation...")
    query_db = db.get_query_db()

    # extract DB feats
    bdescs = []
    qdescs = []

    if not load_feats:
        trfs_list = [trfs] if isinstance(trfs, str) else trfs

        for trfs in trfs_list:
            kw = dict(iscuda=net.iscuda, threads=threads, batch_size=batch_size, same_size='Pad' in trfs or 'Crop' in trfs)
            bdescs.append( extract_image_features(db, trfs, net, desc="DB", **kw) )

            # extract query feats
            qdescs.append( bdescs[-1] if db is query_db else extract_image_features(query_db, trfs, net, desc="query", **kw) )

        # pool from multiple transforms (scales)
        bdescs = F.normalize(pool(bdescs, pooling, gemp), p=2, dim=1)
        qdescs = F.normalize(pool(qdescs, pooling, gemp), p=2, dim=1)
    else:
        bdescs = np.load(os.path.join(load_feats, 'feats.bdescs.npy'))
        qdescs = np.load(os.path.join(load_feats, 'feats.qdescs.npy'))

    if save_feats:
        mkdir(save_feats, isfile=True)
        np.save(save_feats+'.bdescs', bdescs.cpu().numpy())
        if query_db is not db:
            np.save(save_feats+'.qdescs', qdescs.cpu().numpy())
        exit()

    if load_distractors:
        ddescs = [ np.load(os.path.join(load_distractors, '%d.bdescs.npy' % i)) for i in tqdm.tqdm(range(0,1000), 'Distractors') ]
        bdescs = np.concatenate([tonumpy(bdescs)] + ddescs)
        qdescs = tonumpy(qdescs) # so matmul below can work

    if whiten is not None:
        bdescs = common.whiten_features(tonumpy(bdescs), net.pca, **whiten)
        qdescs = common.whiten_features(tonumpy(qdescs), net.pca, **whiten)

    if adba is not None:
        bdescs = expand_descriptors(bdescs, **args.adba)
    if aqe is not None:
        qdescs = expand_descriptors(qdescs, db=bdescs, **args.aqe)

    scores = matmul(qdescs, bdescs)

    del bdescs
    del qdescs

    res = {}

    try:
        aps = [db.eval_query_AP(q, s) for q,s in enumerate(tqdm.tqdm(scores,desc='AP'))]
        if not isinstance(aps[0], dict):
            aps = [float(e) for e in aps]
            if detailed: res['APs'] = aps
            res['mAP'] = float(np.mean([e for e in aps if e>=0])) # Queries with no relevants have an AP of -1
        else:
            modes = aps[0].keys()
            for mode in modes:
                apst = [float(e[mode]) for e in aps]
                if detailed: res['APs'+'-'+mode] = apst
                res['mAP'+'-'+mode] = float(np.mean([e for e in apst if e>=0])) # Queries with no relevants have an AP of -1

        if 'ap' in dbg:
            pdb.set_trace()
            pyplot(globals())
            for query in np.argsort(aps):
                subplot_grid(20, 1)
                pl.imshow(query_db.get_image(query))
                qlabel = query_db.get_label(query)
                pl.xlabel('#%d %s' % (query, qlabel))
                pl_noticks()
                ranked = np.argsort(scores[query])[::-1]
                gt = db.get_query_groundtruth(query)[ranked]

                for i,idx in enumerate(ranked):
                    if i+2 > 20: break
                    subplot_grid(20, i+2)
                    pl.imshow(db.get_image(idx))
                    pl.xlabel('#%d %s %g' % (idx, 'OK' if label==qlabel else 'BAD', scores[query,idx]))
                    pl_noticks()
            pdb.set_trace()
    except NotImplementedError:
        print(" AP not implemented!")

    try:
        tops = [db.eval_query_top(q,s) for q,s in enumerate(tqdm.tqdm(scores,desc='top1'))]
        if detailed: res['tops'] = tops
        for k in tops[0]:
            res['top%d'%k] = float(np.mean([top[k] for top in tops]))
    except NotImplementedError:
        pass

    return res