예제 #1
0
 def __init__(self, ch=64, n_classes=0, activation=F.relu):
     super(SNResNetProjectionDiscriminator, self).__init__()
     self.activation = activation
     initializer = chainer.initializers.GlorotUniform()
     with self.init_scope():
         self.block1 = OptimizedBlock(3, ch)
         self.block2 = Block(ch,
                             ch * 2,
                             activation=activation,
                             downsample=True)
         self.block3 = Block(ch * 2,
                             ch * 4,
                             activation=activation,
                             downsample=True)
         self.block4 = Block(ch * 4,
                             ch * 8,
                             activation=activation,
                             downsample=True)
         self.block5 = Block(ch * 8,
                             ch * 16,
                             activation=activation,
                             downsample=True)
         self.block6 = Block(ch * 16,
                             ch * 16,
                             activation=activation,
                             downsample=False)
         self.l7 = SNLinear(ch * 16, 1, initialW=initializer)
         if n_classes > 0:
             self.l_y = SNEmbedID(n_classes, ch * 16, initialW=initializer)
    def __init__(self, ch=64, ch_in=3, n_classes=0, activation=F.relu):
        super(SNResNetProjectionDiscriminator, self).__init__()
        self.activation = activation

        self.block1 = OptimizedBlock(ch_in, ch)
        self.block2 = Block(ch, ch * 2, activation=activation, downsample=True)
        self.block3 = Block(ch * 2,
                            ch * 4,
                            activation=activation,
                            downsample=True)
        self.block4 = Block(ch * 4,
                            ch * 8,
                            activation=activation,
                            downsample=True)
        self.block5 = Block(ch * 8,
                            ch * 16,
                            activation=activation,
                            downsample=True)
        self.block6 = Block(ch * 16,
                            ch * 16,
                            activation=activation,
                            downsample=False)
        self.l7 = SNLinear(ch * 16, 1)
        if n_classes > 0:
            self.l_y = SNEmbedding(n_classes, ch * 16)
예제 #3
0
    def __init__(self, ch=128, n_classes=0, activation=F.relu):
        super(SNResNetProjectionDiscriminator, self).__init__()
        self.activation = activation
        with self.init_scope():
            self.block1 = OptimizedBlock(3, ch)
            self.block2 = Block(ch, ch, activation=activation, downsample=True)
            self.block3 = Block(ch,
                                ch,
                                activation=activation,
                                downsample=False)
            self.block4 = Block(ch,
                                ch,
                                activation=activation,
                                downsample=False)
            self.l5 = SNLinear(ch,
                               1,
                               initialW=chainer.initializers.GlorotUniform(),
                               nobias=True)
            self.l5.u = np.ones((1, 1)).astype(np.float32)

            if n_classes > 0:
                self.l_y = SNEmbedID(
                    n_classes,
                    ch,
                    initialW=chainer.initializers.GlorotUniform())
        seed_weights(self)
 def __init__(self, x_channels=1, y_channels=3, ch=64, activation=F.relu):
     super().__init__()
     self.activation = activation
     initializer = chainer.initializers.GlorotUniform()
     with self.init_scope():
         self.block0_0 = OptimizedBlock(x_channels, ch // 2)
         self.block0_1 = OptimizedBlock(y_channels, ch // 2)
         self.block1 = Block(ch,
                             ch * 2,
                             activation=activation,
                             downsample=True)
         self.block2 = Block(ch * 2,
                             ch * 4,
                             activation=activation,
                             downsample=True)
         self.block3 = Block(ch * 4,
                             ch * 8,
                             activation=activation,
                             downsample=True)
         self.block4 = Block(ch * 8,
                             ch * 16,
                             activation=activation,
                             downsample=True)
         self.block5 = Block(ch * 16,
                             ch * 16,
                             activation=activation,
                             downsample=False)
         self.l6 = Linear(ch * 16, 1, initialW=initializer)
    def __init__(self,
                 init_ch=1,
                 ch=6,
                 activation=F.relu,
                 dim_z=4,
                 bottom_size=32):
        super(Discriminator, self).__init__()
        self.activation = activation
        initializer = chainer.initializers.GlorotUniform()
        with self.init_scope():

            # 1x32x32
            self.phi_block1 = OptimizedBlock(init_ch, ch)
            self.phi_block2 = Block(ch,
                                    ch * 2,
                                    activation=activation,
                                    downsample=True)
            self.phi_block3 = Block(ch * 2,
                                    ch * 2,
                                    activation=activation,
                                    downsample=True)
            # ch*2x8x8 => basically 6*2x8*8 = 768

            self.enc1 = Block1(init_ch,
                               ch,
                               activation=activation,
                               is_shortcut=True,
                               dim_z=dim_z)
            self.enc2 = Block1(ch,
                               ch * 2,
                               activation=activation,
                               is_shortcut=True,
                               dim_z=dim_z)
            self.enc3 = Block1(ch * 2,
                               ch * 2,
                               activation=activation,
                               is_shortcut=True,
                               dim_z=dim_z)
            self.linear = L.Linear(
                ch * 2 * (bottom_size * bottom_size),
                ch * 2 * (bottom_size // 8 * bottom_size // 8))

            self.l8 = SNLinear(ch * 2 * (bottom_size // 8) *
                               (bottom_size // 8),
                               1,
                               initialW=initializer)
 def __init__(self, ch=128, n_classes=0, activation=F.relu):
     super(SRDiscriminator, self).__init__()
     self.activation = activation
     with self.init_scope():
         self.block1 = OptimizedBlock(3, ch)
         self.block2 = Block(ch, ch, activation=activation, downsample=True)
         self.block3 = Block(ch,
                             ch,
                             activation=activation,
                             downsample=False)
         self.block4 = Block(ch,
                             ch,
                             activation=activation,
                             downsample=False)
         self.l5 = SNLinear(ch,
                            1,
                            initialW=chainer.initializers.GlorotUniform(),
                            nobias=True)
         if n_classes > 0:
             self.l_y = SNEmbedID(
                 n_classes,
                 ch,
                 initialW=chainer.initializers.GlorotUniform())