예제 #1
0
def linsvm_predict(input_dict):
    from discomll.classification import linear_svm

    predictions_url = linear_svm.predict(input_dict["dataset"],
                                         fitmodel_url=input_dict["fitmodel_url"],
                                         save_results=True)
    return {"string": predictions_url}
예제 #2
0
def linsvm_predict(input_dict):
    from discomll.classification import linear_svm

    predictions_url = linear_svm.predict(
        input_dict["dataset"],
        fitmodel_url=input_dict["fitmodel_url"],
        save_results=True)
    return {"string": predictions_url}
예제 #3
0
train = dataset.Data(data_tag=[
    "http://ropot.ijs.si/data/sonar/train/xaaaaa.gz",
    "http://ropot.ijs.si/data/sonar/train/xaaabj.gz"
],
                     data_type="gzip",
                     generate_urls=True,
                     X_indices=range(1, 61),
                     id_index=0,
                     y_index=61,
                     X_meta=["c" for i in range(1, 61)],
                     y_map=["R", "M"],
                     delimiter=",")

test = dataset.Data(data_tag=[
    "http://ropot.ijs.si/data/sonar/test/xaaaaa.gz",
    "http://ropot.ijs.si/data/sonar/test/xaaabj.gz"
],
                    data_type="gzip",
                    generate_urls=True,
                    X_indices=range(1, 61),
                    id_index=0,
                    y_index=61,
                    X_meta=["c" for i in range(1, 61)],
                    y_map=["R", "M"],
                    delimiter=",")

fit_model = linear_svm.fit(train)
predictions = linear_svm.predict(test, fit_model)
print predictions
예제 #4
0
from discomll import dataset
from discomll.classification import linear_svm

train = dataset.Data(
    data_tag=["http://ropot.ijs.si/data/sonar/train/xaaaaa.gz", "http://ropot.ijs.si/data/sonar/train/xaaabj.gz"],
    data_type="gzip",
    generate_urls=True,
    X_indices=range(1, 61),
    id_index=0,
    y_index=61,
    X_meta=["c" for i in range(1, 61)],
    y_map=["R", "M"],
    delimiter=",")

test = dataset.Data(
    data_tag=["http://ropot.ijs.si/data/sonar/test/xaaaaa.gz", "http://ropot.ijs.si/data/sonar/test/xaaabj.gz"],
    data_type="gzip",
    generate_urls=True,
    X_indices=range(1, 61),
    id_index=0,
    y_index=61,
    X_meta=["c" for i in range(1, 61)],
    y_map=["R", "M"],
    delimiter=",")

fit_model = linear_svm.fit(train)
predictions = linear_svm.predict(test, fit_model)
print predictions