예제 #1
0
    def test_fit(self):
        seed = 666
        file_ = "tests/files/libsvm/2"

        x, y = ds.load_svmlight_file(file_, (10, 300), 780, False)

        csvm = CascadeSVM(cascade_arity=3,
                          max_iter=5,
                          tol=1e-4,
                          kernel='linear',
                          c=2,
                          gamma=0.1,
                          check_convergence=True,
                          random_state=seed,
                          verbose=False)

        csvm.fit(x, y)

        self.assertTrue(csvm.converged)

        csvm = CascadeSVM(cascade_arity=3,
                          max_iter=1,
                          tol=1e-4,
                          kernel='linear',
                          c=2,
                          gamma=0.1,
                          check_convergence=False,
                          random_state=seed,
                          verbose=False)

        csvm.fit(x, y)
        self.assertFalse(csvm.converged)
        self.assertEqual(csvm.iterations, 1)
예제 #2
0
    def test_score(self, collect):
        seed = 666

        # negative points belong to class 1, positives to 0
        p1, p2, p3, p4 = [1, 2], [2, 1], [-1, -2], [-2, -1]

        x = ds.array(np.array([p1, p4, p3, p2]), (2, 2))
        y = ds.array(np.array([0, 1, 1, 0]).reshape(-1, 1), (2, 1))

        csvm = CascadeSVM(cascade_arity=3,
                          max_iter=10,
                          tol=1e-4,
                          kernel='rbf',
                          c=2,
                          gamma=0.1,
                          check_convergence=True,
                          random_state=seed,
                          verbose=False)

        csvm.fit(x, y)

        # points are separable, scoring the training dataset should have 100%
        # accuracy
        x_test = ds.array(np.array([p1, p2, p3, p4]), (2, 2))
        y_test = ds.array(np.array([0, 0, 1, 1]).reshape(-1, 1), (2, 1))

        accuracy = csvm.score(x_test, y_test, collect)
        if not collect:
            accuracy = compss_wait_on(accuracy)

        self.assertEqual(accuracy, 1.0)
예제 #3
0
    def test_predict(self):
        seed = 666

        # negative points belong to class 1, positives to 0
        p1, p2, p3, p4 = [1, 2], [2, 1], [-1, -2], [-2, -1]

        x = ds.array(np.array([p1, p4, p3, p2]), (2, 2))
        y = ds.array(np.array([0, 1, 1, 0]).reshape(-1, 1), (2, 1))

        csvm = CascadeSVM(cascade_arity=3,
                          max_iter=10,
                          tol=1e-4,
                          kernel='linear',
                          c=2,
                          gamma=0.1,
                          check_convergence=False,
                          random_state=seed,
                          verbose=False)

        csvm.fit(x, y)

        # p5 should belong to class 0, p6 to class 1
        p5, p6 = np.array([1, 1]), np.array([-1, -1])

        x_test = ds.array(np.array([p1, p2, p3, p4, p5, p6]), (2, 2))

        y_pred = csvm.predict(x_test)

        l1, l2, l3, l4, l5, l6 = y_pred.collect()

        self.assertTrue(l1 == l2 == l5 == 0)
        self.assertTrue(l3 == l4 == l6 == 1)
예제 #4
0
    def test_fit_default_gamma(self):
        """ Tests that the fit method converges when using gamma=auto on a
        toy dataset """
        seed = 666
        file_ = "tests/files/libsvm/2"

        x, y = ds.load_svmlight_file(file_, (10, 300), 780, False)

        csvm = CascadeSVM(cascade_arity=3,
                          max_iter=5,
                          tol=1e-4,
                          kernel='linear',
                          c=2,
                          check_convergence=True,
                          random_state=seed,
                          verbose=False)

        csvm.fit(x, y)

        self.assertTrue(csvm.converged)

        csvm = CascadeSVM(cascade_arity=3,
                          max_iter=1,
                          tol=1e-4,
                          kernel='linear',
                          c=2,
                          gamma=0.1,
                          check_convergence=False,
                          random_state=seed,
                          verbose=False)

        csvm.fit(x, y)
        self.assertFalse(csvm.converged)
        self.assertEqual(csvm.iterations, 1)
예제 #5
0
    def test_duplicates(self):
        """ Tests that C-SVM does not generate duplicate support vectors """
        x = ds.array(
            np.array([[0, 1], [1, 1], [0, 1], [1, 2], [0, 0], [2, 2], [2, 1],
                      [1, 0]]), (2, 2))

        y = ds.array(np.array([1, 0, 1, 0, 1, 0, 0, 1]).reshape(-1, 1), (2, 1))

        csvm = CascadeSVM(c=1, random_state=1, max_iter=100, tol=0)
        csvm.fit(x, y)

        csvm._collect_clf()
        self.assertEqual(csvm._clf.support_vectors_.shape[0], 6)
예제 #6
0
    def test_decision_func(self):
        seed = 666

        # negative points belong to class 1, positives to 0
        # all points are in the x-axis
        p1, p2, p3, p4 = [0, 2], [0, 1], [0, -2], [0, -1]

        x = ds.array(np.array([p1, p4, p3, p2]), (2, 2))
        y = ds.array(np.array([0, 1, 1, 0]).reshape(-1, 1), (2, 1))

        csvm = CascadeSVM(cascade_arity=3,
                          max_iter=10,
                          tol=1e-4,
                          kernel='rbf',
                          c=2,
                          gamma=0.1,
                          check_convergence=False,
                          random_state=seed,
                          verbose=False)

        csvm.fit(x, y)

        # p1 should be equidistant to p3, and p2 to p4
        x_test = ds.array(np.array([p1, p2, p3, p4]), (2, 2))

        y_pred = csvm.decision_function(x_test)

        d1, d2, d3, d4 = y_pred.collect()

        self.assertTrue(np.isclose(abs(d1) - abs(d3), 0))
        self.assertTrue(np.isclose(abs(d2) - abs(d4), 0))

        # p5 and p6 should be in the decision function (distance=0)
        p5, p6 = np.array([1, 0]), np.array([-1, 0])

        x_test = ds.array(np.array([p5, p6]), (1, 2))

        y_pred = csvm.decision_function(x_test)

        d5, d6 = y_pred.collect()

        self.assertTrue(np.isclose(d5, 0))
        self.assertTrue(np.isclose(d6, 0))
예제 #7
0
    def test_fit_private_params(self):
        kernel = 'rbf'
        c = 2
        gamma = 0.1
        seed = 666
        file_ = "tests/files/libsvm/2"

        x, y = ds.load_svmlight_file(file_, (10, 300), 780, False)
        csvm = CascadeSVM(kernel=kernel, c=c, gamma=gamma, random_state=seed)
        csvm.fit(x, y)

        self.assertEqual(csvm._clf_params['kernel'], kernel)
        self.assertEqual(csvm._clf_params['C'], c)
        self.assertEqual(csvm._clf_params['gamma'], gamma)

        kernel, c = 'linear', 0.3
        csvm = CascadeSVM(kernel=kernel, c=c, random_state=seed)
        csvm.fit(x, y)
        self.assertEqual(csvm._clf_params['kernel'], kernel)
        self.assertEqual(csvm._clf_params['C'], c)
예제 #8
0
    def test_sparse(self):
        """ Tests that C-SVM produces the same results with sparse and dense
        data"""
        seed = 666
        train = "tests/files/libsvm/3"

        x_sp, y_sp = ds.load_svmlight_file(train, (10, 300), 780, True)
        x_d, y_d = ds.load_svmlight_file(train, (10, 300), 780, False)

        csvm_sp = CascadeSVM(random_state=seed)
        csvm_sp.fit(x_sp, y_sp)

        csvm_d = CascadeSVM(random_state=seed)
        csvm_d.fit(x_d, y_d)

        sv_d = csvm_d._clf.support_vectors_
        sv_sp = csvm_sp._clf.support_vectors_.toarray()

        self.assertTrue(np.array_equal(sv_d, sv_sp))

        coef_d = csvm_d._clf.dual_coef_
        coef_sp = csvm_sp._clf.dual_coef_.toarray()

        self.assertTrue(np.array_equal(coef_d, coef_sp))
예제 #9
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--svmlight", help="read files in SVMLight format",
                        action="store_true")
    parser.add_argument("-dt", "--detailed_times",
                        help="get detailed execution times (read and fit)",
                        action="store_true")
    parser.add_argument("-k", "--kernel", metavar="KERNEL", type=str,
                        help="linear or rbf (default is rbf)",
                        choices=["linear", "rbf"], default="rbf")
    parser.add_argument("-a", "--arity", metavar="CASCADE_ARITY", type=int,
                        help="default is 2", default=2)
    parser.add_argument("-b", "--block_size", metavar="BLOCK_SIZE", type=str,
                        help="two comma separated ints that represent the "
                             "size of the blocks in which to divide the input "
                             "data (default is 100,100)",
                        default="100,100")
    parser.add_argument("-i", "--iteration", metavar="MAX_ITERATIONS",
                        type=int, help="default is 5", default=5)
    parser.add_argument("-g", "--gamma", metavar="GAMMA", type=float,
                        help="(only for rbf kernel) default is 1 / n_features",
                        default=None)
    parser.add_argument("-c", metavar="C", type=float, default=1,
                        help="Penalty parameter C of the error term. "
                             "Default:1")
    parser.add_argument("-f", "--features", metavar="N_FEATURES",
                        help="number of features of the input data "
                             "(only for SVMLight files)",
                        type=int, default=None, required=False)
    parser.add_argument("-t", "--test-file", metavar="TEST_FILE_PATH",
                        help="test file path", type=str, required=False)
    parser.add_argument("-o", "--output_file", metavar="OUTPUT_FILE_PATH",
                        help="output file path", type=str, required=False)
    parser.add_argument("--convergence", help="check for convergence",
                        action="store_true")
    parser.add_argument("--dense", help="store data in dense format (only "
                                        "for SVMLight files)",
                        action="store_true")
    parser.add_argument("train_data",
                        help="input file in CSV or SVMLight format", type=str)
    parser.add_argument("-v", "--verbose", action="store_true")
    parser.add_argument("-s", "--shuffle", help="shuffle input data",
                        action="store_true")
    args = parser.parse_args()

    train_data = args.train_data

    s_time = time.time()
    read_time = 0

    if not args.gamma:
        gamma = "auto"
    else:
        gamma = args.gamma

    sparse = not args.dense

    bsize = args.block_size.split(",")
    block_size = (int(bsize[0]), int(bsize[1]))

    if args.svmlight:
        x, y = ds.load_svmlight_file(train_data, block_size, args.features,
                                     sparse)
    else:
        x = ds.load_txt_file(train_data, block_size)
        y = x[:, x.shape[1] - 2: x.shape[1] - 1]
        x = x[:, :x.shape[1] - 1]

    if args.shuffle:
        x, y = shuffle(x, y)

    if args.detailed_times:
        barrier()
        read_time = time.time() - s_time
        s_time = time.time()

    csvm = CascadeSVM(cascade_arity=args.arity, max_iter=args.iteration,
                      c=args.c, gamma=gamma,
                      check_convergence=args.convergence, verbose=args.verbose)

    csvm.fit(x, y)

    barrier()
    fit_time = time.time() - s_time

    out = [args.kernel, args.arity, args.part_size, csvm._clf_params["gamma"],
           args.c, csvm.iterations, csvm.converged, read_time, fit_time]

    if os.path.isdir(train_data):
        n_files = os.listdir(train_data)
        out.append(len(n_files))

    if args.test_file:
        if args.svmlight:
            x_test, y_test = ds.load_svmlight_file(args.test_file, block_size,
                                                   args.features,
                                                   sparse)
        else:
            x_test = ds.load_txt_file(args.test_file, block_size)
            y_test = x_test[:, x_test.shape[1] - 1: x_test.shape[1]]
            x_test = x_test[:, :x_test.shape[1] - 1]

        out.append(compss_wait_on(csvm.score(x_test, y_test)))

    if args.output_file:
        with open(args.output_file, "ab") as f:
            wr = csv.writer(f)
            wr.writerow(out)
    else:
        print(out)