def __init__(self, index=0): GenericPE.__init__(self) self._add_input(self.INPUT_NAME) self._add_output(self.OUTPUT_NAME) self.index = 0 self.sum = 0 self.count = 0
def __init__(self): GenericPE.__init__(self) self._add_input('input') self._add_output('output') #self._add_output('time') self.key_arrays = [] self.it = 1
def __init__(self): GenericPE.__init__(self) self._add_input('input', grouping='global') #self._add_output('time') self.first_key_val = [0] * NUM_PROCS self.last_key_val = [0] * NUM_PROCS self.total_local_keys = [0] * NUM_PROCS
def __init__(self): GenericPE.__init__(self) self._add_input('input', grouping=[0]) self._add_output('output') self.dst_node_list = defaultdict(list) self.cur_rank = defaultdict(float) self.it = 1
def __init__(self): GenericPE.__init__(self) self.outputconnections = { ReadJSON.OUTPUT_NAME: { NAME: ReadJSON.OUTPUT_NAME } }
def __init__(self): GenericPE.__init__(self) self._add_input('input') self._add_output('output') self._add_output('time') self.it = 1 self.converged = False
def __init__(self): GenericPE.__init__(self) self._add_input('input', grouping=[0]) self._add_output('output') self.previous_rank = defaultdict(float) self.next_rank = defaultdict(float) self.it = 1
def __init__(self): GenericPE.__init__(self) self.inputconnections['input'] = { NAME : 'input' } out1 = {} out1[NAME] = "output" out1[TYPE] = ['word'] self.outputconnections["output"] = out1
def __init__(self): GenericPE.__init__(self) self._add_input("odd") self._add_input("even") self._add_output("output") self.list_odd=[] self.list_even=[]
def __init__(self, input_name, output_name): GenericPE.__init__(self) self.input_name = input_name self.output_name = output_name self._add_input(input_name) self._add_output(output_name)
def __init__(self): GenericPE.__init__(self) self._add_input(self.INPUT_NAME, grouping='global') self._add_output(self.OUTPUT_NAME) self.sum = 0 self.sum_squared = 0 self.count = 0
def __init__(self): GenericPE.__init__(self) self._add_input(self.INPUT_NAME, grouping='global') self._add_output(self.OUTPUT_NAME) self.index = 0 self.sum = 0 self.count = 0
def __init__(self): GenericPE.__init__(self) self._add_input("input") self._add_output("image") self._add_output("windows") self._add_output("window_tapering")
def __init__(self, name, wrapped): GenericPE.__init__(name) self.wrappedPE = wrapped self.inputconnections = wrapped.inputconnections self.outputconnections = wrapped.outputconnections self.cachedInputs = {} for name in self.inputconnections: self.cachedInputs[name] = []
def __init__(self): GenericPE.__init__(self) self.inputconnections['input'] = { NAME : 'input', GROUPING : [0] } out1 = {} out1[NAME] = "output" out1[TYPE] = ['word', 'count'] self.outputconnections["output"] = out1 self.mywords = {}
def __init__(self): GenericPE.__init__(self) self.outputconnections = { 'output': { NAME: 'output', TYPE: ['timestamp', 'location', 'stream'] } }
def __init__(self, numOutputs=1): GenericPE.__init__(self) if numOutputs == 1: self.outputconnections = { 'output' : { NAME : 'output', TYPE: ['number'] } } else: for i in range(numOutputs): self.outputconnections['output%s' % i] = { NAME : 'output%s' % i, TYPE: ['number'] } self.counter = 0 self.outputnames = list(self.outputconnections.keys())
def __init__(self, name, monitor): GenericPE.__init__(self) self.name = name self.data_headers = {} self.linked_inputs = [] # External monitor (not to be used directly) self._monitor = monitor
def __init__(self): GenericPE.__init__(self) self._add_input ('input', grouping='global') self.state = None self.happiness={} #pair state, sentiment self.top_number = 3 self.top_states = [] self.top_scores = [] self.total_tweets = 0
def __init__(self, numOutputs=1): GenericPE.__init__(self) if numOutputs == 1: self._add_output('output', tuple_type=['number']) else: for i in range(numOutputs): self._add_output('output%s' % i, tuple_type=['number']) self.counter = 0 self.outputnames = list(self.outputconnections.keys())
def __init__(self): GenericPE.__init__(self) self._add_input('input', grouping='global') self.state = None self.happiness = {} #pair state, sentiment self.top_number = 3 self.top_states = [] self.top_scores = [] self.total_tweets = 0
def __init__(self, num_inputs=0): GenericPE.__init__(self) # form expected input dict self.num_inputs = num_inputs for i in range(num_inputs): self.inputconnections['input%s' % i] = { NAME: 'input%s' % i, TYPE: ['number']} self.outputconnections = {'output': {NAME: 'output', TYPE: ['result']}}
def __init__(self): GenericPE.__init__(self) #self.numprocesses = nprocs self.it = 1 self._add_input('input', grouping='global') # if self.it != niteration: # self._add_output('output') self._add_output('time') self.previous_rank = [0.0] * number_nodes self.next_rank = [0.0] * number_nodes
def __init__(self, input_mappings, output_mappings, proc_to_pe): GenericPE.__init__(self) # work out the order of PEs self.ordered = _order_by_dependency(input_mappings, output_mappings) self.input_mappings = input_mappings self.output_mappings = output_mappings self.proc_to_pe = proc_to_pe self.result_mappings = None self.map_inputs = _no_map self.map_outputs = _no_map
def __init__(self): GenericPE.__init__(self) self._add_input('bucket_size_totals', grouping='all') self._add_input('input') self._add_output('output') #self._add_output('time') self.bucket_size = [] self.bucket_size_totals = [] self.my_rank = [] self.key_buff1 = [] self.it = 1
def __init__(self): GenericPE.__init__(self) self.inputconnections = { 'input0': { NAME: 'input0' }, 'input1': { NAME: 'input1' } } self.outputconnections = {'output': {NAME: 'output', TYPE: ['result']}}
def __init__(self): GenericPE.__init__(self) self._add_input('input', grouping=[0]) self._add_output('output') #self._add_output('time') # self._add_output('min&max_val') self.key_buff2 = [[]] * NUM_PROCS self.process_bucket_distrib_ptr1 = [] self.process_bucket_distrib_ptr2 = [] self.bucket_size_totals = [] self.it = 1
def __init__(self, workflow, inputmappings={}, outputmappings={}): GenericPE.__init__(self) self.workflow = workflow for input_name in inputmappings: self.inputconnections[input_name] = { NAME : input_name } for output_name in outputmappings.values(): self.outputconnections[output_name] = { NAME : output_name } for node in workflow.graph.nodes(): pe = node.getContainedObject() pe.log = types.MethodType(simpleLogger, pe) self.inputmappings = inputmappings self.outputmappings = outputmappings
def __init__(self, nb_scenario): GenericPE.__init__(self) import numpy as np for i in range(nb_scenario): name_scenario = 'scenario_' + str(i + 1) self._add_input(name_scenario, grouping=[1]) self.nb_scenario = nb_scenario self._add_output('output') self.mat = 0 self.time = 0 self.count = 0
def __init__(self, inputs=[], outputs=[], num_inputs=0, num_outputs=0): GenericPE.__init__(self) for i in range(num_inputs): name = '%s%s' % (BasePE.INPUT_NAME, i) self.inputconnections[name] = {NAME: name} for i in range(num_outputs): name = '%s%s' % (BasePE.OUTPUT_NAME, i) self.outputconnections[name] = {NAME: name} for name in inputs: self.inputconnections[name] = {NAME: name} for name in outputs: self.outputconnections[name] = {NAME: name}
def __init__(self): GenericPE.__init__(self) self._add_input('input') self._add_output('time') #self._add_output('output') #self._add_output('verified') self.process_bucket_distrib_ptr1 = [] self.process_bucket_distrib_ptr2 = [] self.min_key_val = 0 self.max_key_val = 0 self.bucket_size_totals = [] self.my_rank = 0 self.key_buff2 = [] self.vcounter = 0 self.it = 1
def __init__(self, num_outputs=0): GenericPE.__init__(self) self._add_input(splitPE.INPUT_NAME) # read input from file self.nos = [1, 2, 3, 4, 5, 6, 7, 4, 5, 9, 10, 300] # create output chunk dict self.num_outputs = num_outputs for i in range(num_outputs): name = '%s%s' % (BasePE.OUTPUT_NAME, i) self.outputconnections['output%s' % i] = { NAME: 'output%s' % i, TYPE: ['number']} self.outputnames = list(self.outputconnections.keys())
def __init__(self): GenericPE.__init__(self) in1 = {} in1[NAME] = INPUT_NAME self.inputconnections[INPUT_NAME] = in1 out1 = {} out1[TYPE] = ['streams'] out1[NAME] = OUTPUT_DATA out_md = {} out_md[NAME] = OUTPUT_METADATA out_md[TYPE] = ['metadata'] self.outputconnections[OUTPUT_DATA] = out1 self.outputconnections[OUTPUT_METADATA] = out_md self.taskId = str(uuid.uuid1()) self.controlParameters = {} self.appParameters = {} self.provon = True self.iterationIndex = 0 self.instanceId = 'Invoker-instance-' + socket.gethostname()
def __init__(self): GenericPE.__init__(self) in1 = {} in1[NAME] = INPUT_NAME self.inputconnections[INPUT_NAME] = in1 out1 = {} out1[TYPE] = ['streams'] out1[NAME] = OUTPUT_DATA out_md = {} out_md[NAME] = OUTPUT_METADATA out_md[TYPE] = ['metadata'] self.outputconnections[OUTPUT_DATA] = out1 self.outputconnections[OUTPUT_METADATA] = out_md self.taskId=str(uuid.uuid1()) self.controlParameters = {} self.appParameters = {} self.provon = True self.iterationIndex = 0 self.instanceId = 'Invoker-instance-'+socket.gethostname()
def __init__(self, inputs=[], outputs=[], num_inputs=0, num_outputs=0): ''' :param inputs: a list of input names (optional) :param outputs: a list of output names (optional) :param numInputs: number of inputs; the inputs are generated as 'input0' to 'input`n`' where `n` is the number of inputs (optional) :param numInputs: number of outputs; the outputs are generated as 'output0' to 'output`n`' where `n` is the number of outputs (optional) ''' GenericPE.__init__(self) for i in range(num_inputs): name = '%s%s' % (BasePE.INPUT_NAME, i) self.inputconnections[name] = {NAME: name} for i in range(num_outputs): name = '%s%s' % (BasePE.OUTPUT_NAME, i) self.outputconnections[name] = {NAME: name} for name in inputs: self.inputconnections[name] = {NAME: name} for name in outputs: self.outputconnections[name] = {NAME: name}
def __init__(self, inputs=[], outputs=[], numInputs=0, numOutputs=0): ''' :param inputs: a list of input names (optional) :param outputs: a list of output names (optional) :param numInputs: number of inputs; the inputs are generated as 'input0' to 'input`n`' where `n` is the number of inputs (optional) :param numInputs: number of outputs; the outputs are generated as 'output0' to 'output`n`' where `n` is the number of outputs (optional) ''' GenericPE.__init__(self) for i in range(numInputs): name = '%s%s' % (BasePE.INPUT_NAME, i) self.inputconnections[name] = { NAME : name } for i in range(numOutputs): name = '%s%s' % (BasePE.OUTPUT_NAME, i) self.outputconnections[name] = { NAME : name } for name in inputs: self.inputconnections[name] = { NAME : name } for name in outputs: self.outputconnections[name] = { NAME : name }
def __init__(self, name='ProvenanceRecorder', toW3C=False): GenericPE.__init__(self) self.porttopemap={} self._add_output('feedback') self._add_input(ProvenanceRecorder.INPUT_NAME, grouping=['prov_cluster'])
def __init__(self, indexes=[0]): GenericPE.__init__(self) self._add_input(self.INPUT_NAME) self._add_output(self.OUTPUT_NAME) self.indexes = indexes self.value = [0 for i in indexes]
def __init__(self): GenericPE.__init__(self) self._add_input("input", grouping=[0]) self._add_output("output") self.count=defaultdict(int)
def __init__(self): GenericPE.__init__(self) self._add_input("input") self._add_output("output")
def __init__(self, *args, **kwargs): GenericPE.__init__(self) self.parameters = {}
def __init__(self): GenericPE.__init__(self) self._add_output('output')
def __init__(self, numIterations=1): GenericPE.__init__(self) self._add_output('output', tuple_type=['number']) self.counter = 0 self.numIterations = numIterations