def main(): #what size images are we working with?? width = 256 height = width frame_ref=400 f_rate=30. f_low=[.1,.3] f_high=[1.,3.] #define the base dirs for the data and analysis #note that these should become network locations base_dir_data='/media/cornelis/DataCDH/Raw-data/Test Data' base_dir_analysis='/media/cornelis/DataCDH/data/Test Data Output' to_analyze=jf.check_dirs(base_dir_data,base_dir_analysis) print(to_analyze) #start a loop on the folders to analyze and do some things. #we need to make a local copy for speed of loading and saving base_dir_tmp='/home/cornelis/PycharmProjects/BrainImageAnalyzer/data' for f in to_analyze: #Check if the tmp dir exists or not, copy over the dirs in the date folder if os.path.isdir(base_dir_tmp): print('tmp found, deleting') shutil.rmtree(base_dir_tmp) shutil.copytree(base_dir_data+f,base_dir_tmp) else: shutil.copytree(base_dir_data+f,base_dir_tmp) print('tmp not found, just copying') #figure out which cages are present #print('These are the cages '+str(jf.check_cages(base_dir_tmp))+' in'+f) the_cages=jf.check_cages(base_dir_tmp) #continue doing stuff #step one is to read in all the raw data and save all the green videos if len(the_cages)>0: for c in the_cages: #setup the dir for reading the raw data data_dir=base_dir_tmp+str(c)+'/Videos/' #which mice are in the cage? the_mice=jf.check_mice(data_dir) #print(data_dir) os.chdir(data_dir) raw_list=glob.glob('*.raw') green_dir=base_dir_tmp+c+'/Green/' os.makedirs(green_dir) for rf in raw_list: frames=fj.get_frames(data_dir+rf,width,height) out_green_fn=rf[:-4]+'.g' fj.save_to_file(green_dir,out_green_fn,frames,np.uint8) print('waiting...') #copy the resulting folder to the analysis location green_dir_to_copy=base_dir_analysis+f+'/'+c #print(green_dir_to_copy) if os.path.isdir(green_dir_to_copy+'/Green/'): shutil.rmtree(green_dir_to_copy+'/Green/') shutil.copytree(green_dir,green_dir_to_copy+'/Green/') else: shutil.copytree(green_dir,green_dir_to_copy+'/Green/') #Do alignments!! print "Doing alignments..." aligned_dir=base_dir_tmp+c+'/Aligned/' os.makedirs(aligned_dir) for m in the_mice: lof, lofilenames=dj.get_file_list(green_dir, m) print(lof) lp=dj.get_distance_var(lof,width,height,frame_ref) for i in range(len(lp)): print('Working on this file: ')+str(lof[i]) #tmp_lof=[] #tmp_lof.append(lof[i]) #print('creating 1 element list') #print(type(tmp_lof)) frames=dj.get_green_frames(str(lof[i]),width,height) frames=dj.shift_frames(frames,lp[i]) #save it! out_aligned_fn=str(lofilenames[i]) out_aligned_fn=out_aligned_fn[:-4]+'_aligned.g' fj.save_to_file(aligned_dir,out_aligned_fn,frames,np.uint8) #copy the resulting folder to the analysis location aligned_dir_to_copy=base_dir_analysis+f+'/'+c if os.path.isdir(aligned_dir_to_copy+'/Aligned/'): shutil.rmtree(aligned_dir_to_copy+'/Aligned/') shutil.copytree(aligned_dir,aligned_dir_to_copy+'/Aligned/') else: shutil.copytree(aligned_dir,aligned_dir_to_copy+'/Aligned/') #Do temporal filters, apply and calculate dff #each filter band for i in range(len(f_low)): #set up a folder for this band band_dir=base_dir_tmp+c+'/DFF_Freq_Band_'+str(f_low[i])+'-'+str(f_high[i])+'Hz/' #and for GSR version gsrband_dir=base_dir_tmp+c+'/GSR_DFF_Freq_Band_'+str(f_low[i])+'-'+str(f_high[i])+'Hz/' os.makedirs(band_dir) os.makedirs(gsrband_dir) #go to the aligned tmp dir os.chdir(aligned_dir) aligned_list=glob.glob('*.g') for af in aligned_list: frames=dj.get_green_frames(aligned_dir+af,width,height) avg_frames=fj.calculate_avg(frames) frames=fj.cheby_filter(frames, f_low[i], f_high[i], f_rate) frames+=avg_frames frames=fj.calculate_df_f0(frames) #save this out_dff_fn=af[:-4]+'_DFF_'+str(f_low[i])+'-'+str(f_high[i])+'Hz.raw' fj.save_to_file(band_dir,out_dff_fn,frames,np.float32) #do gsr frames=fj.gsr(frames,width,height) #save this out_gsr_fn=af[:-4]+'_GSR_DFF_'+str(f_low[i])+'-'+str(f_high[i])+'Hz.raw' fj.save_to_file(gsrband_dir,out_gsr_fn,frames,np.float32) #copy the resulting folder to the analysis location dff_dir_to_copy=base_dir_analysis+f+'/'+c if os.path.isdir(dff_dir_to_copy+'/DFF_Freq_Band_'+str(f_low[i])+'-'+str(f_high[i])+'Hz/'): shutil.rmtree(dff_dir_to_copy+'/DFF_Freq_Band_'+str(f_low[i])+'-'+str(f_high[i])+'Hz/') shutil.copytree(band_dir,dff_dir_to_copy+'/DFF_Freq_Band_'+str(f_low[i])+'-'+str(f_high[i])+'Hz/') else: shutil.copytree(band_dir,dff_dir_to_copy+'/DFF_Freq_Band_'+str(f_low[i])+'-'+str(f_high[i])+'Hz/') gsr_dir_to_copy=base_dir_analysis+f+'/'+c if os.path.isdir(gsr_dir_to_copy+'/GSR_DFF_Freq_Band_'+str(f_low[i])+'-'+str(f_high[i])+'Hz/'): shutil.rmtree(gsr_dir_to_copy+'/GSR_DFF_Freq_Band_'+str(f_low[i])+'-'+str(f_high[i])+'Hz/') shutil.copytree(gsrband_dir,gsr_dir_to_copy+'/GSR_DFF_Freq_Band_'+str(f_low[i])+'-'+str(f_high[i])+'Hz/') else: shutil.copytree(gsrband_dir,gsr_dir_to_copy+'/GSR_DFF_Freq_Band_'+str(f_low[i])+'-'+str(f_high[i])+'Hz/') else: print('No cages present, sry :(') #at end of loop make sure to clean up tmp folder shutil.rmtree(base_dir_tmp)
def getImage(self,params): import pandas as pd print("getImage entered") choose_map = params['choose_map'] preprocessed_frames_dict = {} if choose_map == 'spc_map': # Retrieve list of all x,y values for what was ticked tups=[(k,v) for (k,v) in params.items() if k[2:] in params['regions_check']] coords={} for x_tup in tups: for y_tup in tups: # print(str(x_tup) + " and " + str(y_tup) + "?") if x_tup[0][0] == 'x' and y_tup[0][0] == 'y' and x_tup[0][2:] == y_tup[0][2:]: # print(str(x_tup) + " and " + str(y_tup)) coords[x_tup[0][2:]] = (x_tup[1],y_tup[1]) # 5,6,3,2,1,4 images = {} for coord in coords.items(): if coord[1][0]!='' and coord[1][1]!='': print("Entered the loop") region = coord[0] x = float(coord[1][0]) y = float(coord[1][1]) f_low = float(params['f_low']) f_high = float(params['f_high']) frame_ref = float(params['frame_ref']) raw_file_folder = params['raw_file_folder'] raw_filename_to_align = params['raw_file_to_align'] if 'preprocessed_frames' not in globals(): # The first file added to lof is raw_file_to_align lof=[] for root, dirs, files in os.walk(raw_file_folder): for file in files: if(raw_filename_to_align.lower() in file.title().lower()): lof.append((os.path.join(root, file))) for root, dirs, files in os.walk(raw_file_folder): for file in files: if ((file.endswith(".raw") or file.endswith(".g")) and (os.path.join(root, file)) not in lof): lof.append((os.path.join(root, file))) # Uncomment to check result immdediately after import # frames=dj.get_green_frames(str(lof[1]),width,height) # return(frames[0]) # CorrelationMapDisplayer = fj.CorrelationMapDisplayer(frames) # image = CorrelationMapDisplayer.get_correlation_map(x, y, frames) #return(frames[0]) #print("Well F**k") # First element in aligned_frames_list is all frames aligned to user selected raw if len(lof) > 1: print("Doing alignments...") aligned_frames_list = [] lp=dj.get_distance_var(lof,width,height,frame_ref) if 'all_aligns' in params['all_alignments_check']: for i in range(len(lp)): print('Working on this file: ')+str(lof[i]) frames=fj.get_frames(str(lof[i]),width,height) frames_aligned=dj.shift_frames(frames,lp[i]) aligned_frames_list.append(frames_aligned) else: print('Working on this file: ')+str(lof[0]) frames=dj.get_frames(str(lof[0]),width,height) frames_aligned=dj.shift_frames(frames,lp[0]) aligned_frames_list.append(frames_aligned) else: aligned_frames_list=[dj.get_frames(str(lof[0]),width,height)] frames = aligned_frames_list[0] # Uncomment to check result immdediately after alignment #print('MADE IT') #return(aligned_frames_list[0][0]) # CorrelationMapDisplayer = fj.CorrelationMapDisplayer(aligned_frames_list[0]) # image = CorrelationMapDisplayer.get_correlation_map(x, y, aligned_frames_list[0]) # return(image) #print("Well F**k") # Do temporal filters, apply and calculate dff # each filter band # Again, the first element in preprocessed_frames_list is cheby filter applied to all frames aligned to user selected # raw and then df/f0 computed and then gsr applied if option was selected preprocessed_frames_list = [] for f in aligned_frames_list: avg_frames=fj.calculate_avg(frames) frames=fj.cheby_filter(frames, f_low, f_high, frame_rate) #return(np.gradient(frames[0]))[0] frames+=avg_frames frames=fj.calculate_df_f0(frames) preprocessed_frames_list.append(frames) #do gsr # if 'gsr' in params['gsr_check']: # frames=fj.gsr(frames,width,height) # preprocessed_frames_list.append(frames) # else: # preprocessed_frames_list.append(frames) preprocessed_frames = preprocessed_frames_list[0] global preprocessed_frames #do gsr if 'gsr' in params['gsr_check']: #gsr_memory = True #global gsr_memory print('gsr commence') preprocessed_frames=fj.gsr(preprocessed_frames,width,height) #pickle.dump( favorite_color, open( "save.p", "wb" ) ) seed_indicator = 0.5 # output selected map if choose_map == 'spc_map': print('x = '+str(x)) print('y = '+ str(y)) CorrelationMapDisplayer = fj.CorrelationMapDisplayer(preprocessed_frames) image = CorrelationMapDisplayer.get_correlation_map(y, x, preprocessed_frames) preprocessed_frames_dict[region] = preprocessed_frames # Make pixels around the seed equal to the maximum value 1 for the red dot to show image[y,x]=seed_indicator image[y+1,x]=seed_indicator image[y,x+1]=seed_indicator image[y+1,x+1]=seed_indicator image[y-1,x]=seed_indicator image[y,x-1]=seed_indicator image[y-1,x-1]=seed_indicator image[y-1,x+1]=seed_indicator image[y+1,x-1]=seed_indicator images[region] = image else: image = fj.standard_deviation(preprocessed_frames) # Make pixels around the seed equal to the maximum value 1 for the red dot to show image[y,x]=seed_indicator image[y+1,x]=seed_indicator image[y,x+1]=seed_indicator image[y+1,x+1]=seed_indicator image[y-1,x]=seed_indicator image[y,x-1]=seed_indicator image[y-1,x-1]=seed_indicator image[y-1,x+1]=seed_indicator image[y+1,x-1]=seed_indicator images[region] = image # You have a dictionary of all the images. Concatenate them vertically in a logical order global preprocessed_frames_dict images_list = [] for region in params['regions_check']: for image_and_key in images.items(): if image_and_key[0] == region: print(image_and_key[0]) images_list = images_list + [image_and_key[1]] combined_image = np.vstack(images_list) return combined_image