예제 #1
0
def travelling_salesman():

    N = 50
    random = Random()
    random.setSeed(0)
    points = [[0 for x in xrange(2)] for x in xrange(N)]
    for i in range(0, len(points)):
        points[i][0] = random.nextDouble()
        points[i][1] = random.nextDouble()
    fill = [N] * N
    ranges = array('i', fill)

    odd_mimic = DiscreteUniformDistribution(ranges)
    odd = DiscretePermutationDistribution(N)

    ef = TravelingSalesmanRouteEvaluationFunction(points)
    nf = SwapNeighbor()
    mf = SwapMutation()
    cf = TravelingSalesmanCrossOver(ef)

    rhc_generic("TSPrhc50", ef, odd, nf, 1.0, 10000, 10, 5)
    sa_generic("TSPsa50", ef, odd, nf, 1.0, 10000, 10, 5,
               ([1E12, 1E6], [0.999, 0.99, 0.95]))
    ga_generic("TSPga50", ef, odd, mf, cf, 50.0, 10000, 10, 1,
               ([2000, 200], [0.5, 0.25], [0.25, 0.1, 0.02]))
    mimic_discrete("TSPmimic50", ef, odd_mimic, ranges, 300.0, 10000, 10, 1,
                   ([200], [100], [0.1, 0.5, 0.9]))

    print "TSP all done"
"""
Commandline parameter(s):
    none
"""

# set N value.  This is the number of points
N = 25
random = Random()

points = [[0 for x in xrange(2)] for x in xrange(N)]
for i in range(0, len(points)):
    points[i][0] = random.nextDouble()
    points[i][1] = random.nextDouble()

ef = TravelingSalesmanRouteEvaluationFunction(points)
odd = DiscretePermutationDistribution(N)
nf = SwapNeighbor()
mf = SwapMutation()
cf = TravelingSalesmanCrossOver(ef)
hcp = GenericHillClimbingProblem(ef, odd, nf)
gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)

# #Try 5 rounds of RHC
# expt = "expt_Restarts"
# for i in range(5):
#     rhc = RandomizedHillClimbing(hcp)
#     train(rhc, "RHC", ef, 20000, "round=" + str(i), expt)
#     print "RHC Round" + str(i) + ": " + str(ef.value(rhc.getOptimal()))

# expt = "expt_med"
#
def solveit(oaname, params):
    # set N value.  This is the number of points
    N = 50
    iterations = 1000
    tryi = 1
    random = Random()

    points = [[0 for x in xrange(2)] for x in xrange(N)]
    for i in range(0, len(points)):
        points[i][0] = random.nextDouble()
        points[i][1] = random.nextDouble()

    ef = TravelingSalesmanRouteEvaluationFunction(points)
    odd = DiscretePermutationDistribution(N)
    nf = SwapNeighbor()
    mf = SwapMutation()
    cf = TravelingSalesmanCrossOver(ef)
    hcp = GenericHillClimbingProblem(ef, odd, nf)
    gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)

    if oaname == "RHC":
        iterations = int(params[0])
        tryi = int(params[1])
        oa = RandomizedHillClimbing(hcp)
    if oaname == "SA":    
        oa = SimulatedAnnealing(float(params[0]), float(params[1]), hcp)
    if oaname == "GA":
        iterations=1000
        oa = StandardGeneticAlgorithm(int(params[0]), int(params[1]), int(params[2]), gap)
    if oaname == "MMC":
        iterations=1000
        # for mimic we use a sort encoding
        ef = TravelingSalesmanSortEvaluationFunction(points)
        fill = [N] * N
        ranges = array('i', fill)
        odd = DiscreteUniformDistribution(ranges)
        df = DiscreteDependencyTree(.1, ranges)
        pop = GenericProbabilisticOptimizationProblem(ef, odd, df)
        oa = MIMIC(int(params[0]), int(params[1]), pop)

    print "Running %s using %s for %d iterations, try %d" % (oaname, ','.join(params), iterations, tryi)
    print "="*20
    starttime = timeit.default_timer()
    output = []
    for i in range(iterations):
        oa.train()
        if i%10 == 0:
            optimal = oa.getOptimal()
            score = ef.value(optimal)
            elapsed = int(timeit.default_timer()-starttime)
            output.append([str(i), str(score), str(elapsed)])

    print 'Inverse of Distance [score]: %.3f' % score
    print 'train time: %d secs' % (int(timeit.default_timer()-starttime))

    scsv = 'tsp-%s-%s.csv' % (oaname, '-'.join(params))
    print "Saving to %s" % (scsv),
    with open(scsv, 'w') as csvf:
        writer = csv.writer(csvf)
        for row in output:
            writer.writerow(row)
    print "saved."
    print "="*20

    print "Route:"
    if oaname == 'MMC':
        optimal = oa.getOptimal()
        fill = [0] * optimal.size()
        ddata = array('d', fill)
        for i in range(0,len(ddata)):
            ddata[i] = optimal.getContinuous(i)
        order = ABAGAILArrays.indices(optimal.size())
        ABAGAILArrays.quicksort(ddata, order)
        print order
    else:
        path = []
        for x in range(0,N):
            path.append(oa.getOptimal().getDiscrete(x))
        print path
def run_traveling_salesman():
    # set N value.  This is the number of points
    N = 50
    random = Random()

    points = [[0 for x in xrange(2)] for x in xrange(N)]
    for i in range(0, len(points)):
        points[i][0] = random.nextDouble()
        points[i][1] = random.nextDouble()

    ef = TravelingSalesmanRouteEvaluationFunction(points)
    odd = DiscretePermutationDistribution(N)
    nf = SwapNeighbor()
    mf = SwapMutation()
    cf = TravelingSalesmanCrossOver(ef)
    hcp = GenericHillClimbingProblem(ef, odd, nf)
    gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)

    iters = [50, 100, 250, 500, 1000, 2500, 5000, 10000, 25000, 50000, 100000]
    num_repeats = 5

    rhc_results = []
    rhc_times = []
    for i in iters:
        print(i)
        for j in range(num_repeats):
            start = time.time()
            rhc = RandomizedHillClimbing(hcp)
            fit = FixedIterationTrainer(rhc, i)
            fit.train()
            end = time.time()
            rhc_results.append(ef.value(rhc.getOptimal()))
            rhc_times.append(end - start)
            print "RHC Inverse of Distance: " + str(ef.value(rhc.getOptimal()))
            # print "Route:"
            # path = []
            # for x in range(0,N):
            #     path.append(rhc.getOptimal().getDiscrete(x))
            # print path

    sa_results = []
    sa_times = []
    for i in iters:
        print(i)
        for j in range(num_repeats):
            start = time.time()
            sa = SimulatedAnnealing(1E12, .999, hcp)
            fit = FixedIterationTrainer(sa, i)
            fit.train()
            sa_results.append(ef.value(sa.getOptimal()))
            sa_times.append(end - start)
            print "SA Inverse of Distance: " + str(ef.value(sa.getOptimal()))
            # print "Route:"
            # path = []
            # for x in range(0,N):
            #     path.append(sa.getOptimal().getDiscrete(x))
            # print path

    ga_results = []
    ga_times = []
    for i in iters:
        print(i)
        for j in range(num_repeats):
            start = time.time()
            ga = StandardGeneticAlgorithm(2000, 1500, 250, gap)
            fit = FixedIterationTrainer(ga, i)
            fit.train()
            end = time.time()
            ga_results.append(ef.value(ga.getOptimal()))
            print "GA Inverse of Distance: " + str(ef.value(ga.getOptimal()))
            ga_times.append(end - start)
            # print "Route:"
            # path = []
            # for x in range(0,N):
            #     path.append(ga.getOptimal().getDiscrete(x))
            # print path

    # for mimic we use a sort encoding
    ef = TravelingSalesmanSortEvaluationFunction(points)
    fill = [N] * N
    ranges = array('i', fill)
    odd = DiscreteUniformDistribution(ranges)
    df = DiscreteDependencyTree(.1, ranges)
    pop = GenericProbabilisticOptimizationProblem(ef, odd, df)

    mimic_results = []
    mimic_times = []
    for i in iters[0:6]:
        print(i)
        for j in range(num_repeats):
            start = time.time()
            mimic = MIMIC(500, 100, pop)
            fit = FixedIterationTrainer(mimic, i)
            fit.train()
            end = time.time()

            mimic_results.append(ef.value(mimic.getOptimal()))
            print "MIMIC Inverse of Distance: " + str(
                ef.value(mimic.getOptimal()))
            # print "Route:"
            # path = []
            # optimal = mimic.getOptimal()
            # fill = [0] * optimal.size()
            # ddata = array('d', fill)
            # for i in range(0,len(ddata)):
            #     ddata[i] = optimal.getContinuous(i)
            # order = ABAGAILArrays.indices(optimal.size())
            # ABAGAILArrays.quicksort(ddata, order)
            # print order
            mimic_times.append(end - start)

    with open('travelingsalesman.csv', 'w') as csvfile:
        writer = csv.writer(csvfile)
        writer.writerow(rhc_results)
        writer.writerow(rhc_times)
        writer.writerow(sa_results)
        writer.writerow(sa_times)
        writer.writerow(ga_results)
        writer.writerow(ga_times)
        writer.writerow(mimic_results)
        writer.writerow(mimic_times)

    return rhc_results, rhc_times, sa_results, sa_times, ga_results, ga_times, mimic_results, mimic_times
예제 #5
0
def travelingsalesmanfunc(N, iterations):

    rhcMult = 1500
    saMult = 1500
    gaMult = 1
    mimicMult = 3

    random = Random()

    points = [[0 for x in xrange(2)] for x in xrange(N)]
    for i in range(0, len(points)):
        points[i][0] = random.nextDouble()
        points[i][1] = random.nextDouble()

    optimalOut = []
    timeOut = []
    evalsOut = []

    for niter in iterations:

        ef = TravelingSalesmanRouteEvaluationFunction(points)
        odd = DiscretePermutationDistribution(N)
        nf = SwapNeighbor()
        mf = SwapMutation()
        cf = TravelingSalesmanCrossOver(ef)
        hcp = GenericHillClimbingProblem(ef, odd, nf)
        gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)

        iterOptimalOut = [N, niter]
        iterTimeOut = [N, niter]
        iterEvals = [N, niter]

        start = time.time()
        rhc = RandomizedHillClimbing(hcp)
        fit = FixedIterationTrainer(rhc, niter * rhcMult)
        fit.train()
        end = time.time()
        rhcOptimal = ef.value(rhc.getOptimal())
        rhcTime = end - start
        print "RHC Inverse of Distance: optimum: " + str(rhcOptimal)
        print "RHC time: " + str(rhcTime)
        #print "RHC Inverse of Distance: " + str(ef.value(rhc.getOptimal()))
        print "Route:"
        path = []
        for x in range(0, N):
            path.append(rhc.getOptimal().getDiscrete(x))
        print path
        iterOptimalOut.append(rhcOptimal)
        iterTimeOut.append(rhcTime)
        functionEvals = ef.getNumEvals()
        ef.zeroEvals()
        iterEvals.append(functionEvals)

        start = time.time()
        sa = SimulatedAnnealing(1E12, .999, hcp)
        fit = FixedIterationTrainer(sa, niter * saMult)
        fit.train()
        end = time.time()
        saOptimal = ef.value(sa.getOptimal())
        saTime = end - start
        print "SA Inverse of Distance optimum: " + str(saOptimal)
        print "SA time: " + str(saTime)
        #print "SA Inverse of Distance: " + str(ef.value(sa.getOptimal()))
        print "Route:"
        path = []
        for x in range(0, N):
            path.append(sa.getOptimal().getDiscrete(x))
        print path
        iterOptimalOut.append(saOptimal)
        iterTimeOut.append(saTime)
        functionEvals = ef.getNumEvals()
        ef.zeroEvals()
        iterEvals.append(functionEvals)

        start = time.time()
        ga = StandardGeneticAlgorithm(2000, 1500, 250, gap)
        fit = FixedIterationTrainer(ga, niter * gaMult)
        fit.train()
        end = time.time()
        gaOptimal = ef.value(ga.getOptimal())
        gaTime = end - start
        print "GA Inverse of Distance optimum: " + str(gaOptimal)
        print "GA time: " + str(gaTime)
        #print "GA Inverse of Distance: " + str(ef.value(ga.getOptimal()))
        print "Route:"
        path = []
        for x in range(0, N):
            path.append(ga.getOptimal().getDiscrete(x))
        print path
        iterOptimalOut.append(gaOptimal)
        iterTimeOut.append(gaTime)
        functionEvals = ef.getNumEvals()
        ef.zeroEvals()
        iterEvals.append(functionEvals)

        start = time.time()
        # for mimic we use a sort encoding
        ef = TravelingSalesmanSortEvaluationFunction(points)
        fill = [N] * N
        ranges = array('i', fill)
        odd = DiscreteUniformDistribution(ranges)
        df = DiscreteDependencyTree(.1, ranges)
        pop = GenericProbabilisticOptimizationProblem(ef, odd, df)

        start = time.time()
        mimic = MIMIC(500, 100, pop)
        fit = FixedIterationTrainer(mimic, niter * mimicMult)
        fit.train()
        end = time.time()
        mimicOptimal = ef.value(mimic.getOptimal())
        mimicTime = end - start
        print "MIMIC Inverse of Distance optimum: " + str(mimicOptimal)
        print "MIMIC time: " + str(mimicTime)
        #print "MIMIC Inverse of Distance: " + str(ef.value(mimic.getOptimal()))
        print "Route:"
        path = []
        optimal = mimic.getOptimal()
        fill = [0] * optimal.size()
        ddata = array('d', fill)
        for i in range(0, len(ddata)):
            ddata[i] = optimal.getContinuous(i)
        order = ABAGAILArrays.indices(optimal.size())
        ABAGAILArrays.quicksort(ddata, order)
        print order
        iterOptimalOut.append(mimicOptimal)
        iterTimeOut.append(mimicTime)
        functionEvals = ef.getNumEvals()
        ef.zeroEvals()
        iterEvals.append(functionEvals)

        optimalOut.append(iterOptimalOut)
        timeOut.append(iterTimeOut)
        evalsOut.append(iterEvals)

    return [optimalOut, timeOut, evalsOut]
예제 #6
0
    points[i][1] = Random().nextDouble()

#RHC
output_directory = "Results/Small/TSP_RHC.csv"
with open(output_directory, 'w') as f:
    f.write('iterations,fitness,time\n')

for i in range(len(iteration_list)):
    iteration = iteration_list[i]
    rhc_total = 0
    rhc_time = 0

    for x in range(runs):
        ranges = array('i', [2] * N)
        fitness = TravelingSalesmanRouteEvaluationFunction(points)
        discrete_dist = DiscretePermutationDistribution(N)
        discrete_neighbor = SwapNeighbor()
        discrete_mutation = SwapMutation()
        discrete_dependency = DiscreteDependencyTree(.1, ranges)
        hill_problem = GHC(fitness, discrete_dist, discrete_neighbor)

        start = time.clock()
        rhc_problem = RHC(hill_problem)
        fit = FixedIterationTrainer(rhc_problem, iteration)
        fit.train()
        end = time.clock()
        full_time = end - start
        rhc_total += fitness.value(rhc_problem.getOptimal())
        rhc_time += full_time

    rhc_total_avg = rhc_total / runs