if (num_iters > max(5 * args.batch_size, args.replay_buffer_size // 200) and num_iters % args.learning_freq == 0): # Sample a bunch of transitions from replay buffer if args.prioritized: experience = replay_buffer.sample(args.batch_size, beta=beta_schedule.value(num_iters)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(args.batch_size) weights = np.ones_like(rewards) # Minimize the error in Bellman's equation and compute TD-error td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights) # Update the priorities in the replay buffer if args.prioritized: new_priorities = np.abs(td_errors) + args.prioritized_eps replay_buffer.update_priorities(batch_idxes, new_priorities) # Update target network. if num_iters % args.target_update_freq == 0: update_target() if start_time is not None: steps_per_iter.update(info['steps'] - start_steps) iteration_time_est.update(time.time() - start_time) start_time, start_steps = time.time(), info["steps"] # Save the model and training state. if num_iters > 0 and (num_iters % args.save_freq == 0 or info["steps"] > args.num_steps): maybe_save_model(savedir, container, { 'replay_buffer': replay_buffer, 'num_iters': num_iters, 'monitor_state': monitored_env.get_state(),
def learn( env, p_dist_func, lr=5e-4, eps=0.0003125, max_timesteps=100000, buffer_size=50000, exp_t1=1e6, exp_p1=0.1, exp_t2=25e6, exp_p2=0.01, # exploration_fraction=0.1, # exploration_final_eps=0.02, train_freq=1, batch_size=32, print_freq=1, checkpoint_freq=10000, learning_starts=1000, gamma=0.95, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, num_cpu=16, param_noise=False, callback=None, dist_params=None, n_action=None, action_map=None): """Train a distdeepq model. Parameters ------- env: gym.Env environment to train on p_dist_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. lr: float learning rate for adam optimizer max_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. set to None to disable printing batch_size: int size of a batched sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to max_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. num_cpu: int number of cpus to use for training callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/distdeepq/categorical.py for details on the act function. """ # Create all the functions necessary to train the model sess = make_session(num_cpu=num_cpu) sess.__enter__() # logger.configure() def make_obs_ph(name): return U.BatchInput(env.observation_space.shape, name=name) if dist_params is None: raise ValueError('dist_params is required') # z, dz = build_z(**dist_params) act, train, update_target, debug = distdeepq.build_train( make_obs_ph=make_obs_ph, p_dist_func=p_dist_func, # num_actions=env.action_space.n, n_action=n_action, optimizer=tf.train.AdamOptimizer(learning_rate=lr, epsilon=eps), gamma=gamma, grad_norm_clipping=10, param_noise=param_noise, dist_params=dist_params) act_params = { 'make_obs_ph': make_obs_ph, 'p_dist_func': p_dist_func, 'num_actions': n_action, 'dist_params': dist_params } # Create the replay buffer if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = max_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. #exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps), # initial_p=1.0, # final_p=exploration_final_eps) # exploration = PiecewiseSchedule([(0, 1.0),(max_timesteps/25, 0.1), # (max_timesteps, 0.01)], outside_value=0.01) exploration = PiecewiseSchedule([(0, 1.0), (exp_t1, exp_p1), (exp_t2, exp_p2)], outside_value=exp_p2) # Initialize the parameters and copy them to the target network. U.initialize() update_target() episode_rewards = [0.0] saved_mean_reward = None obs = env.reset() reset = True with tempfile.TemporaryDirectory() as td: model_saved = False model_file = os.path.join(td, "model") for t in range(max_timesteps): if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} if not param_noise: update_eps = exploration.value(t) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(t). # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = -np.log(1. - exploration.value( t) + exploration.value(t) / float(env.action_space.n)) kwargs['reset'] = reset kwargs[ 'update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0] reset = False action_val = action_map[action] new_obs, rew, done, _ = env.step(action_val) # env.render() # rew = rew-1 for proposed loss with new metric # rew = rew-1 # Store transition in the replay buffer. replay_buffer.add(obs, action, rew, new_obs, float(done)) obs = new_obs episode_rewards[-1] += rew if done: obs = env.reset() episode_rewards.append(0.0) reset = True if t > learning_starts and t % train_freq == 0: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample( batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample( batch_size) weights, batch_idxes = np.ones_like(rewards), None errors = train(obses_t, actions, rewards, obses_tp1, dones, weights) if prioritized_replay: new_priorities = np.abs(errors) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically. update_target() mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1) num_episodes = len(episode_rewards) if done and print_freq is not None and len( episode_rewards) % print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean 100 episode reward", mean_100ep_reward) logger.record_tabular("% time spent exploring", int(100 * exploration.value(t))) # debug['pi'] = tf.Print(debug['pi'], [debug['pi'], "target pi"]) # tf.Print(debug['mu'], [debug['mu'], "target mu"]) # tf.Print(debug['sigma'], [debug['sigma'], "target sigma"]) logger.dump_tabular() if (checkpoint_freq is not None and t > learning_starts and num_episodes > 100 and t % checkpoint_freq == 0): if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward: if print_freq is not None: logger.log( "Saving model due to mean reward increase: {} -> {}" .format(saved_mean_reward, mean_100ep_reward)) U.save_state(model_file) model_saved = True saved_mean_reward = mean_100ep_reward if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format( saved_mean_reward)) U.load_state(model_file) return ActWrapper(act, act_params)