def setup_loader(is_val=False, verbose=False, use_half=False): global ap if is_val and not c.run_eval: loader = None else: dataset = MyDataset( c.data_path, c.meta_file_val if is_val else c.meta_file_train, c.r, c.text_cleaner, preprocessor=preprocessor, ap=ap, batch_group_size=0 if is_val else c.batch_group_size * c.batch_size, min_seq_len=0 if is_val else c.min_seq_len, max_seq_len=float("inf") if is_val else c.max_seq_len, phoneme_cache_path=c.phoneme_cache_path, use_phonemes=c.use_phonemes, phoneme_language=c.phoneme_language, enable_eos_bos=c.enable_eos_bos_chars, verbose=verbose, use_half=use_half) sampler = DistributedSampler(dataset) if num_gpus > 1 else None loader = DataLoader( dataset, batch_size=c.eval_batch_size if is_val else c.batch_size, shuffle=False, collate_fn=dataset.collate_fn, drop_last=False, sampler=sampler, num_workers=c.num_val_loader_workers if is_val else c.num_loader_workers, pin_memory=False) return loader
def setup_loader(ap, r, is_val=False, verbose=False): if is_val and not c.run_eval: loader = None else: dataset = MyDataset( r, c.text_cleaner, meta_data=meta_data_eval if is_val else meta_data_train, ap=ap, tp=c.text if 'text' in c.keys() else None, batch_group_size=0 if is_val else c.batch_group_size * c.batch_size, min_seq_len=c.min_seq_len, max_seq_len=c.max_seq_len, phoneme_cache_path=c.phoneme_cache_path, use_phonemes=c.use_phonemes, phoneme_language=c.phoneme_language, enable_eos_bos=c.enable_eos_bos_chars, verbose=verbose) sampler = DistributedSampler(dataset) if num_gpus > 1 else None loader = DataLoader( dataset, batch_size=c.eval_batch_size if is_val else c.batch_size, shuffle=False, collate_fn=dataset.collate_fn, drop_last=False, sampler=sampler, num_workers=c.num_val_loader_workers if is_val else c.num_loader_workers, pin_memory=False) return loader
def setup_loader(ap, is_val=False, verbose=False): global meta_data_train global meta_data_eval if "meta_data_train" not in globals(): if c.meta_file_train is not None: meta_data_train = get_preprocessor_by_name(c.dataset)( c.data_path, c.meta_file_train) else: meta_data_train = get_preprocessor_by_name(c.dataset)(c.data_path) if "meta_data_eval" not in globals() and c.run_eval: if c.meta_file_val is not None: meta_data_eval = get_preprocessor_by_name(c.dataset)( c.data_path, c.meta_file_val) else: meta_data_eval, meta_data_train = split_dataset(meta_data_train) if is_val and not c.run_eval: loader = None else: dataset = MyDataset( c.r, c.text_cleaner, meta_data=meta_data_eval if is_val else meta_data_train, ap=ap, batch_group_size=0 if is_val else c.batch_group_size * c.batch_size, min_seq_len=c.min_seq_len, max_seq_len=c.max_seq_len, phoneme_cache_path=c.phoneme_cache_path, use_phonemes=c.use_phonemes, phoneme_language=c.phoneme_language, enable_eos_bos=c.enable_eos_bos_chars, verbose=verbose) sampler = DistributedSampler(dataset) if num_gpus > 1 else None loader = DataLoader( dataset, batch_size=c.eval_batch_size if is_val else c.batch_size, shuffle=False, collate_fn=dataset.collate_fn, drop_last=False, sampler=sampler, num_workers=c.num_val_loader_workers if is_val else c.num_loader_workers, pin_memory=False) return loader
def setup_loader(c, is_val=False, verbose=False): global ap num_gpus = torch.cuda.device_count() if is_val and not c.run_eval: loader = None else: preprocessor = importlib.import_module('datasets.preprocess') preprocessor = getattr(preprocessor, c.dataset.lower()) dataset = MyDataset( c.data_path, c.meta_file_val if is_val else c.meta_file_train, c.r, c.text_cleaner, preprocessor=preprocessor, ap=ap, batch_group_size=0 if is_val else c.batch_group_size * c.batch_size, min_seq_len=0 if is_val else c.min_seq_len, max_seq_len=float("inf") if is_val else c.max_seq_len, cached=False if c.dataset != "tts_cache" else True, phoneme_cache_path=c.phoneme_cache_path, use_phonemes=c.use_phonemes, phoneme_language=c.phoneme_language, verbose=verbose) sampler = DistributedSampler(dataset) if num_gpus > 1 else None loader = DataLoader( dataset, batch_size=c.eval_batch_size if is_val else c.batch_size, shuffle=False, collate_fn=dataset.collate_fn, drop_last=False, sampler=sampler, num_workers=c.num_val_loader_workers if is_val else c.num_loader_workers, pin_memory=False) return loader