def __init__(self): self.y_star = np.array([1.3]) self.y_dim = 1 self.prior = distr.uniform self.prior_args = [0, 4 * np.pi] self.rng = [0, 4 * np.pi] self.proposal = distr.normal self.proposal_args = [3] self.use_log = False self.true_posterior_rng = self.rng proportional = lambda x: distr.normal.pdf( self.y_star, self.true_function(x), 0.2) self.true_posterior = distr.proportional(proportional) self.true_posterior_args = [] self.simulator_args = ['theta']
def __init__(self): self.y_star = np.array([2.0]) self.true_args = [2.1150] self.y_dim = 1 self.prior = distr.uniform self.prior_args = [-10, 10] self.true_posterior_rng = [-3.5, 3.5] proportional = lambda x: distr.normal.pdf( self.y_star, self.true_function(x), 0.1 + x ** 2) self.true_posterior = distr.proportional(proportional) self.true_posterior_args = [] self.rng = [-10, 10] self.simulator_args = ['theta'] self.proposal = distr.normal self.proposal_args = [2] self.use_log = False
def __init__(self): self.y_star = np.array([0.1]) self.y_dim = 1 self.prior = distr.uniform self.prior_args = [0, 1.5 * np.pi] self.rng = [0, 1.5* np.pi] self.proposal = distr.normal self.proposal_args = [1] self.use_log = False self.true_posterior_rng = self.rng proportional = lambda x: distr.gamma.pdf( np.clip(self.true_function(x) - self.y_star, 0, 1e100), 2, 2) #np.clip(self.y_star + self.true_function(x), 0, 1e100), 2, 2) self.true_posterior = distr.proportional(proportional, 0, 1.5 * np.pi) self.true_posterior_args = [] self.simulator_args = ['theta']
def __init__(self): self.y_star = np.array([2.0]) self.true_args = np.array([2.1150]) self.y_dim = 1 self.simulator_args = ['theta'] self.prior = distr.uniform self.prior_args = [-4, 4] self.true_posterior_rng = [-3.5, 3.5] proportional = lambda x: distr.gamma.pdf( np.clip(self.true_function(x) - self.y_star, 0, 1e100), 2, 2) self.true_posterior = distr.proportional(proportional, -3.5, 3.5) self.true_posterior_args = [] self.rng = [-4, 4] self.proposal = distr.normal self.proposal_args = [2] self.use_log = False
def __init__(self): self.y_star = np.array([7]) self.y_dim = 1 self.prior = distr.uniform self.prior_args = [0, 2 * np.pi] self.rng = [0, 2 * np.pi] self.proposal = distr.normal self.proposal_args = [1.5] self.use_log = False proportional = lambda x: distr.normal.pdf( self.y_star, 2 * np.sin(x) + 3 , 0.5) + \ distr.normal.pdf(self.y_star, 6 * np.sin(x) + 3, 0.5) self.true_posterior_rng = [0, np.pi] self.true_posterior = distr.proportional(proportional, lower_limit=0, upper_limit=2 * np.pi) self.true_posterior_args = [] self.simulator_args = ['theta']