예제 #1
0
    def test_model13b(self):
        model = Sequential(self.s, model_table='simple_cnn')
        model.add(layer=InputLayer(n_channels=1, height=10, width=10))
        model.add(layer=OutputLayer(n=10, full_connect=False))
        self.assertTrue(model.summary.loc[1, 'Number of Parameters'] == (0, 0))

        model1 = Sequential(self.s, model_table='simple_cnn')
        model1.add(layer=InputLayer(n_channels=1, height=10, width=10))
        model1.add(layer=OutputLayer(n=10, full_connect=True))
        self.assertTrue(model1.summary.loc[1, 'Number of Parameters'] == (1000, 10))

        model2 = Sequential(self.s, model_table='Simple_CNN')
        model2.add(layer=InputLayer(n_channels=1, height=10, width=10))
        model2.add(layer=OutputLayer(n=10, full_connect=True, include_bias=False))
        self.assertTrue(model2.summary.loc[1, 'Number of Parameters'] == (1000, 0))

        model3 = Sequential(self.s, model_table='Simple_CNN')
        model3.add(layer=InputLayer(n_channels=1, height=10, width=10))
        model3.add(layer=Conv2d(4, 3))
        model3.add(layer=OutputLayer(n=10))
        self.assertTrue(model3.summary.loc[2, 'Number of Parameters'] == (4000, 10))

        model4 = Sequential(self.s, model_table='Simple_CNN')
        model4.add(layer=InputLayer(n_channels=1, height=10, width=10))
        model4.add(layer=Conv2d(4, 3))
        model4.add(layer=OutputLayer(n=10, full_connect=False))
        self.assertTrue(model4.summary.loc[2, 'Number of Parameters'] == (0, 0))
예제 #2
0
    def test_model29(self):
        # test specifying output layer in Model.from_onnx_model
        try:
            import onnx
        except:
            unittest.TestCase.skipTest(self, "onnx not found in the libraries")

        if self.data_dir_local is None:
            unittest.TestCase.skipTest(
                self, "DLPY_DATA_DIR_LOCAL is not set in "
                "the environment variables")

        m = onnx.load(os.path.join(self.data_dir_local, 'Simple_CNN1.onnx'))
        output_layer = OutputLayer(n=100)
        model1 = Model.from_onnx_model(conn=self.s,
                                       onnx_model=m,
                                       offsets=[
                                           1,
                                           1,
                                           1,
                                       ],
                                       scale=2,
                                       std='std',
                                       output_layer=output_layer)

        self.assertTrue(model1.layers[-1].config['n'] == 100)
예제 #3
0
    def test_model18(self):
        model1 = Sequential(self.s, model_table='Simple_CNN1')
        model1.add(InputLayer(3, 224, 224))
        model1.add(Conv2d(8, 7))
        model1.add(Pooling(2))
        model1.add(Conv2d(8, 7))
        model1.add(Pooling(2))
        model1.add(Dense(16))
        model1.add(OutputLayer(act='softmax', n=2))

        if self.data_dir is None:
            unittest.TestCase.skipTest(
                self, "DLPY_DATA_DIR is not set in the environment variables")

        caslib, path = caslibify(self.s,
                                 path=self.data_dir + 'images.sashdat',
                                 task='load')

        self.s.table.loadtable(caslib=caslib,
                               casout={
                                   'name': 'eee',
                                   'replace': True
                               },
                               path=path)

        r = model1.fit(data='eee',
                       inputs='_image_',
                       target='_label_',
                       max_epochs=1)
        self.assertTrue(r.severity == 0)

        model1.save_weights_csv(self.data_dir)
예제 #4
0
    def test_build_gan_model(self):

        if self.server_dir is None:
            unittest.TestCase.skipTest(self, "DLPY_DATA_DIR_SERVER is not set in the environment variables")

        # test default
        resnet18_model = ResNet18_Caffe(self.s,
                                        width=224,
                                        height=224,
                                        random_flip='HV',
                                        random_mutation='random'
                                        )
        branch = resnet18_model.to_functional_model(stop_layers=resnet18_model.layers[-1])

        # raise error
        self.assertRaises(DLPyError, lambda: GANModel(branch, branch))

        # change the output size for generator
        inp = Input(**branch.layers[0].config)
        generator = Conv2D(width=1, height=1, n_filters=224 * 224 * 3)(branch(inp))
        output = OutputLayer(n=1)(generator)
        generator = Model(self.s, inp, output)
        gan_model = GANModel(generator, branch)
        res = gan_model.models['generator'].print_summary()
        print(res)
        res = gan_model.models['discriminator'].print_summary()
        print(res)
예제 #5
0
    def test_model1(self):

        model1 = Sequential(self.s, model_table='Simple_CNN1')
        model1.add(InputLayer(3, 224, 224))
        model1.add(Conv2d(8, 7))
        model1.add(Pooling(2))
        model1.add(Conv2d(8, 7))
        model1.add(Pooling(2))
        model1.add(Dense(16))
        model1.add(OutputLayer(act='softmax', n=2))

        if self.data_dir is None:
            unittest.TestCase.skipTest(self, "DLPY_DATA_DIR is not set in the environment variables")

        caslib, path, tmp_caslib = caslibify(self.s, path=self.data_dir+'images.sashdat', task='load')

        self.s.table.loadtable(caslib=caslib,
                               casout={'name': 'eee', 'replace': True},
                               path=path)

        r = model1.fit(data='eee', inputs='_image_', target='_label_', lr=0.001)
        if r.severity > 0:
            for msg in r.messages:
                print(msg)
        self.assertTrue(r.severity <= 1)
        
        if (caslib is not None) and tmp_caslib:
            self.s.retrieve('table.dropcaslib', message_level = 'error', caslib = caslib)
예제 #6
0
    def test_model22(self):
        model1 = Sequential(self.s, model_table='Simple_CNN1')
        model1.add(InputLayer(3, 224, 224))
        model1.add(Conv2d(8, 7))
        pool1 = Pooling(2)
        model1.add(pool1)
        conv1 = Conv2d(1, 1, act='identity', src_layers=[pool1])
        model1.add(conv1)
        model1.add(Res(act='relu', src_layers=[conv1, pool1]))
        model1.add(Pooling(2))
        model1.add(Dense(2))
        model1.add(OutputLayer(act='softmax', n=2))

        if self.data_dir is None:
            unittest.TestCase.skipTest(self, "DLPY_DATA_DIR is not set in the environment variables")

        caslib, path = caslibify(self.s, path=self.data_dir+'images.sashdat', task='load')

        self.s.table.loadtable(caslib=caslib,
                               casout={'name': 'eee', 'replace': True},
                               path=path)

        r = model1.fit(data='eee', inputs='_image_', target='_label_', max_epochs=1)
        self.assertTrue(r.severity == 0)

        model1.deploy(self.data_dir, output_format='onnx')
예제 #7
0
    def test_model23(self):
        try:
            import onnx
        except:
            unittest.TestCase.skipTest(self, "onnx not found in the libraries")

        model1 = Sequential(self.s, model_table='Simple_CNN1')
        model1.add(InputLayer(3, 224, 224))
        model1.add(Conv2d(8, 7, act='identity', include_bias=False))
        model1.add(BN(act='relu'))
        model1.add(Pooling(2))
        model1.add(Conv2d(8, 7, act='identity', include_bias=False))
        model1.add(BN(act='relu'))
        model1.add(Pooling(2))
        model1.add(Dense(2))
        model1.add(OutputLayer(act='softmax', n=2))

        if self.data_dir is None:
            unittest.TestCase.skipTest(self, "DLPY_DATA_DIR is not set in the environment variables")

        caslib, path = caslibify(self.s, path=self.data_dir+'images.sashdat', task='load')

        self.s.table.loadtable(caslib=caslib,
                               casout={'name': 'eee', 'replace': True},
                               path=path)

        r = model1.fit(data='eee', inputs='_image_', target='_label_', max_epochs=1)
        self.assertTrue(r.severity == 0)

        model1.deploy(self.data_dir, output_format='onnx')
예제 #8
0
    def test_model22_1(self):
        try:
            import onnx
        except:
            unittest.TestCase.skipTest(self, "onnx not found in the libraries")
        from onnx import numpy_helper
        import numpy as np

        model1 = Sequential(self.s, model_table='Simple_CNN1')
        model1.add(InputLayer(3, 224, 224))
        model1.add(Conv2d(8, 7, act='identity', include_bias=False))
        model1.add(Reshape(height=448, width=448, depth=2))
        model1.add(Dense(2))
        model1.add(OutputLayer(act='softmax', n=2))

        if self.data_dir is None:
            unittest.TestCase.skipTest(self, "DLPY_DATA_DIR is not set in the environment variables")

        caslib, path = caslibify(self.s, path=self.data_dir+'images.sashdat', task='load')

        self.s.table.loadtable(caslib=caslib,
                               casout={'name': 'eee', 'replace': True},
                               path=path)

        r = model1.fit(data='eee', inputs='_image_', target='_label_', max_epochs=1)
        self.assertTrue(r.severity == 0)

        model1.deploy(self.data_dir_local, output_format='onnx')

        model_path = os.path.join(self.data_dir_local, 'Simple_CNN1.onnx')
        m = onnx.load(model_path)
        self.assertEqual(m.graph.node[1].op_type, 'Reshape')
        init = numpy_helper.to_array(m.graph.initializer[1])
        self.assertTrue(np.array_equal(init, [ -1,  2, 448, 448]))
예제 #9
0
    def test_CyclicLR(self):
        model1 = Sequential(self.s, model_table = 'Simple_CNN1')
        model1.add(InputLayer(3, 224, 224))
        model1.add(Conv2d(8, 7))
        model1.add(Pooling(2))
        model1.add(Conv2d(8, 7))
        model1.add(Pooling(2))
        model1.add(Dense(16))
        model1.add(OutputLayer(act = 'softmax', n = 2))

        if self.data_dir is None:
            unittest.TestCase.skipTest(self, "DLPY_DATA_DIR is not set in the environment variables")

        caslib, path, tmp_caslib = caslibify(self.s, path = self.data_dir + 'images.sashdat', task = 'load')

        self.s.table.loadtable(caslib = caslib,
                               casout = {'name': 'eee', 'replace': True},
                               path = path)
        lrs = CyclicLR(self.s, 'eee', 4, 1.0, 0.0000001, 0.01)
        solver = VanillaSolver(lr_scheduler=lrs)
        self.assertTrue(self.sample_syntax['CyclicLR'] == solver)

        optimizer = Optimizer(algorithm = solver, log_level = 3, max_epochs = 4, mini_batch_size = 2)
        r = model1.fit(data = 'eee', inputs = '_image_', target = '_label_', optimizer = optimizer, n_threads=2)
        if r.severity > 0:
            for msg in r.messages:
                print(msg)
        self.assertTrue(r.severity <= 1)
예제 #10
0
    def test_model12(self):
        model1 = Sequential(self.s, model_table='Simple_CNN1')
        model1.add(InputLayer(3, 224, 224))
        model1.add(Conv2d(8, 7))
        model1.add(Pooling(2))
        model1.add(Conv2d(8, 7))
        model1.add(Pooling(2))
        model1.add(Dense(16))
        model1.add(OutputLayer(act='softmax', n=2))

        if self.data_dir is None:
            unittest.TestCase.skipTest(self, "DLPY_DATA_DIR is not set in the environment variables")

        caslib, path, tmp_caslib = caslibify(self.s, path=self.data_dir+'images.sashdat', task='load')

        self.s.table.loadtable(caslib=caslib,
                               casout={'name': 'eee', 'replace': True},
                               path=path)

        r = model1.fit(data='eee', inputs='_image_', target='_label_', save_best_weights=True)
        self.assertTrue(r.severity == 0)

        r1 = model1.fit(data='eee', inputs='_image_', target='_label_', max_epochs=3)
        self.assertTrue(r1.severity == 0)

        r2 = model1.fit(data='eee', inputs='_image_', target='_label_', max_epochs=2, save_best_weights=True)
        self.assertTrue(r2.severity == 0)

        r3 = model1.predict(data='eee', use_best_weights=True)
        self.assertTrue(r3.severity == 0)

        if (caslib is not None) and tmp_caslib:
            self.s.retrieve('table.dropcaslib', message_level = 'error', caslib = caslib)
예제 #11
0
    def test_build_gan_model_4(self):

        if self.server_dir is None:
            unittest.TestCase.skipTest(self, "DLPY_DATA_DIR_SERVER is not set in the environment variables")

        discriminator = Sequential(self.s)
        discriminator.add(InputLayer(1, 28, 28))
        discriminator.add(Conv2d(3, 3))
        discriminator.add(Pooling(2))
        discriminator.add(Conv2d(3, 3))
        discriminator.add(Pooling(2))
        discriminator.add(Dense(16))
        discriminator.add(OutputLayer(n=1))

        generator = Sequential(self.s)
        generator.add(InputLayer(1, 100, 1))
        generator.add(Dense(256, act='relu'))
        generator.add(Dense(512, act='relu'))
        generator.add(Dense(1024, act='relu'))
        generator.add(Dense(28 * 28, act='tanh'))
        generator.add(OutputLayer(act='softmax', n=2))

        encoder = Sequential(self.s)
        encoder.add(InputLayer(100, 1, 1))
        encoder.add(Dense(256, act='relu'))
        encoder.add(Dense(512, act='relu'))
        encoder.add(Dense(1024, act='relu'))
        encoder.add(Dense(100, act='tanh'))
        encoder.add(OutputLayer(act='softmax', n=2))

        gan_model = GANModel(generator, discriminator, encoder)

        res = gan_model.models['generator'].print_summary()
        print(res)

        res = gan_model.models['discriminator'].print_summary()
        print(res)

        from dlpy.model import Optimizer, MomentumSolver, AdamSolver
        solver = AdamSolver(lr_scheduler=StepLR(learning_rate=0.0001, step_size=4), clip_grad_max=100,
                            clip_grad_min=-100)
        optimizer = Optimizer(algorithm=solver, mini_batch_size=8, log_level=2, max_epochs=4, reg_l2=0.0001)

        res = gan_model.fit(optimizer, optimizer, self.server_dir + 'mnist_validate',
                            n_samples_generator=32, n_samples_discriminator=32, max_iter=2, n_threads=1,
                            damping_factor=0.5)
        print(res)
예제 #12
0
    def test_model15(self):
        # test RECTIFIER activation for concat layer
        try:
            import onnx
        except:
            unittest.TestCase.skipTest(self, "onnx not found in the libraries")

        model1 = Sequential(self.s, model_table='Simple_CNN1')
        model1.add(InputLayer(3, 224, 224))
        model1.add(Conv2d(8, 7))
        pool1 = Pooling(2)
        model1.add(pool1)
        conv1 = Conv2d(1, 7, src_layers=[pool1])
        conv2 = Conv2d(1, 7, src_layers=[pool1])
        model1.add(conv1)
        model1.add(conv2)
        model1.add(Concat(act='RECTIFIER', src_layers=[conv1, conv2]))
        model1.add(Pooling(2))
        model1.add(Dense(2))
        model1.add(OutputLayer(act='softmax', n=2))

        if self.data_dir is None:
            unittest.TestCase.skipTest(
                self, "DLPY_DATA_DIR is not set in the environment variables")

        caslib, path, tmp_caslib = caslibify(self.s,
                                             path=self.data_dir +
                                             'images.sashdat',
                                             task='load')

        self.s.table.loadtable(caslib=caslib,
                               casout={
                                   'name': 'eee',
                                   'replace': True
                               },
                               path=path)

        r = model1.fit(data='eee',
                       inputs='_image_',
                       target='_label_',
                       max_epochs=1)
        self.assertTrue(r.severity == 0)

        import tempfile
        tmp_dir_to_dump = tempfile.gettempdir()

        model1.deploy(tmp_dir_to_dump, output_format='onnx')

        import os
        os.remove(os.path.join(tmp_dir_to_dump, "Simple_CNN1.onnx"))

        if (caslib is not None) and tmp_caslib:
            self.s.retrieve('table.dropcaslib',
                            message_level='error',
                            caslib=caslib)
예제 #13
0
    def test_model13(self):
        # test dropout
        try:
            import onnx
        except:
            unittest.TestCase.skipTest(self, "onnx not found in the libraries")

        model1 = Sequential(self.s, model_table='Simple_CNN1')
        model1.add(InputLayer(3, 224, 224))
        model1.add(
            Conv2d(8, 7, act='IDENTITY', dropout=0.5, include_bias=False))
        model1.add(BN(act='relu'))
        model1.add(Pooling(2, pool='MEAN', dropout=0.5))
        model1.add(
            Conv2d(8, 7, act='IDENTITY', dropout=0.5, include_bias=False))
        model1.add(BN(act='relu'))
        model1.add(Pooling(2, pool='MEAN', dropout=0.5))
        model1.add(Conv2d(8, 7, act='identity', include_bias=False))
        model1.add(BN(act='relu'))
        model1.add(Dense(16, act='IDENTITY', dropout=0.1))
        model1.add(OutputLayer(act='softmax', n=2))

        if self.data_dir is None:
            unittest.TestCase.skipTest(
                self, "DLPY_DATA_DIR is not set in the environment variables")

        caslib, path, tmp_caslib = caslibify(self.s,
                                             path=self.data_dir +
                                             'images.sashdat',
                                             task='load')

        self.s.table.loadtable(caslib=caslib,
                               casout={
                                   'name': 'eee',
                                   'replace': True
                               },
                               path=path)

        r = model1.fit(data='eee',
                       inputs='_image_',
                       target='_label_',
                       max_epochs=2)
        self.assertTrue(r.severity == 0)

        import tempfile
        tmp_dir_to_dump = tempfile.gettempdir()
        model1.deploy(tmp_dir_to_dump, output_format='onnx')

        import os
        os.remove(os.path.join(tmp_dir_to_dump, "Simple_CNN1.onnx"))

        if (caslib is not None) and tmp_caslib:
            self.s.retrieve('table.dropcaslib',
                            message_level='error',
                            caslib=caslib)
예제 #14
0
    def test_model13a(self):
        model = Sequential(self.s, model_table='simple_cnn')
        model.add(InputLayer(3, 224, 224))
        model.add(Conv2d(2, 3))
        model.add(Pooling(2))
        model.add(Dense(4))
        model.add(OutputLayer(n=2))

        if self.data_dir is None:
            unittest.TestCase.skipTest(self, "DLPY_DATA_DIR is not set in the environment variables")

        model.save_to_table(self.data_dir)
예제 #15
0
    def test_stride(self):
        model = Sequential(self.s, model_table = 'Simple_CNN_3classes_cropped')
        model.add(InputLayer(1, width = 36, height = 144, #offsets = myimage.channel_means,
                             name = 'input1',
                             random_mutation = 'random',
                             random_flip = 'HV'))

        model.add(Conv2d(64, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Conv2d(64, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Conv2d(64, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Pooling(height = 2, width = 2, stride_vertical = 2, stride_horizontal = 1, pool = 'max'))  # 72, 36

        model.add(Conv2d(128, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Conv2d(128, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Conv2d(128, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Pooling(height = 2, width = 2, stride_vertical = 2, stride_horizontal = 1, pool = 'max'))  # 36*36

        model.add(Conv2d(256, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Conv2d(256, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Conv2d(256, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Pooling(2, pool = 'max'))  # 18 * 18

        model.add(Conv2d(512, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Conv2d(512, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Conv2d(512, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Pooling(2, pool = 'max'))  # 9 * 9

        model.add(Conv2d(1024, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Conv2d(1024, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Conv2d(1024, 3, 3, include_bias = False, act = 'identity'))
        model.add(BN(act = 'relu'))
        model.add(Pooling(9))

        model.add(Dense(256, dropout = 0.5))
        model.add(OutputLayer(act = 'softmax', n = 3, name = 'output1'))
        self.assertEqual(model.summary['Output Size'].values[-3], (1, 1, 1024))
        model.print_summary()
        # 2d print summary numerical check
        self.assertEqual(model.summary.iloc[1, -1], 2985984)
예제 #16
0
    def test_imagescaler2(self):
        # test export model with imagescaler
        try:
            import onnx
        except:
            unittest.TestCase.skipTest(self, 'onnx not found')

        if self.data_dir_local is None:
            unittest.TestCase.skipTest(
                self, 'DLPY_DATA_DIR_LOCAL is not set in '
                'the environment variables')

        model1 = Sequential(self.s, model_table='imagescaler2')
        model1.add(
            InputLayer(n_channels=3,
                       width=224,
                       height=224,
                       scale=1 / 255.,
                       offsets=[0.1, 0.2, 0.3]))
        model1.add(Conv2d(8, 7))
        model1.add(Pooling(2))
        model1.add(OutputLayer(act='softmax', n=2))

        caslib, path = caslibify(self.s,
                                 path=self.data_dir + 'images.sashdat',
                                 task='load')
        self.s.table.loadtable(caslib=caslib,
                               casout={
                                   'name': 'eee',
                                   'replace': True
                               },
                               path=path)
        r = model1.fit(data='eee',
                       inputs='_image_',
                       target='_label_',
                       max_epochs=1)
        self.assertTrue(r.severity == 0)

        from dlpy.model_conversion.write_onnx_model import sas_to_onnx
        onnx_model = sas_to_onnx(model1.layers,
                                 self.s.CASTable('imagescaler2'),
                                 self.s.CASTable('imagescaler2_weights'))

        self.assertAlmostEqual(onnx_model.graph.node[0].attribute[0].floats[0],
                               0.1)
        self.assertAlmostEqual(onnx_model.graph.node[0].attribute[0].floats[1],
                               0.2)
        self.assertAlmostEqual(onnx_model.graph.node[0].attribute[0].floats[2],
                               0.3)
        self.assertAlmostEqual(onnx_model.graph.node[0].attribute[1].f,
                               1 / 255.)
예제 #17
0
def SequenceLabeling(conn,
                     model_table='sequence_labeling_model',
                     neurons=10,
                     n_blocks=3,
                     rnn_type='gru'):
    '''
    Generates a sequence labeling model.

    Parameters
    ----------
    conn : CAS
        Specifies the CAS connection object.
    model_table : string, optional
        Specifies the name of CAS table to store the model.
    neurons : int, optional
        Specifies the number of neurons to be in each layer.
        Default: 10
    n_blocks : int, optional
        Specifies the number of bidirectional blocks to be added to the model.
        Default: 3
    rnn_type : string, optional
        Specifies the type of the rnn layer.
        Default: GRU
        Valid Values: RNN, LSTM, GRU
        
    Returns
    -------
    :class:`Sequential`

    '''

    conn.retrieve('loadactionset',
                  _messagelevel='error',
                  actionset='deeplearn')

    if n_blocks >= 1:
        model = Sequential(conn=conn, model_table=model_table)
        model.add(
            Bidirectional(n=neurons,
                          n_blocks=n_blocks,
                          rnn_type=rnn_type,
                          name='bi_' + rnn_type + '_layer_'))
        model.add(OutputLayer())
    else:
        raise DLPyError(
            'The number of blocks for a sequence labeling model should be at least 1.'
        )

    return model
예제 #18
0
    def test_plot_ticks(self):

        model1 = Sequential(self.s, model_table='Simple_CNN1')
        model1.add(InputLayer(3, 224, 224))
        model1.add(Conv2d(8, 7))
        model1.add(Pooling(2))
        model1.add(Conv2d(8, 7))
        model1.add(Pooling(2))
        model1.add(Dense(16))
        model1.add(OutputLayer(act='softmax', n=2))

        if self.data_dir is None:
            unittest.TestCase.skipTest(self, "DLPY_DATA_DIR is not set in the environment variables")

        caslib, path, tmp_caslib = caslibify(self.s, path=self.data_dir+'images.sashdat', task='load')

        self.s.table.loadtable(caslib=caslib,
                               casout={'name': 'eee', 'replace': True},
                               path=path)

        r = model1.fit(data='eee', inputs='_image_', target='_label_', lr=0.001, max_epochs=5)
        
        # Test default tick_frequency value of 1
        ax = model1.plot_training_history()
        self.assertEqual(len(ax.xaxis.majorTicks), model1.n_epochs)

        # Test even
        tick_frequency = 2
        ax = model1.plot_training_history(tick_frequency=tick_frequency)
        self.assertEqual(len(ax.xaxis.majorTicks), model1.n_epochs // tick_frequency + 1)

        # Test odd
        tick_frequency = 3
        ax = model1.plot_training_history(tick_frequency=tick_frequency)
        self.assertEqual(len(ax.xaxis.majorTicks), model1.n_epochs // tick_frequency + 1)

        # Test max
        tick_frequency = model1.n_epochs
        ax = model1.plot_training_history(tick_frequency=tick_frequency)
        self.assertEqual(len(ax.xaxis.majorTicks), model1.n_epochs // tick_frequency + 1)
        
        # Test 0 
        tick_frequency = 0
        ax = model1.plot_training_history(tick_frequency=tick_frequency)
        self.assertEqual(len(ax.xaxis.majorTicks), model1.n_epochs)

        if (caslib is not None) and tmp_caslib:
            self.s.retrieve('table.dropcaslib', message_level = 'error', caslib = caslib)
예제 #19
0
 def test_conv1d_model(self):
     # a model from https://blog.goodaudience.com/introduction-to-1d-convolutional-neural-networks-in-keras-for-time-sequences-3a7ff801a2cf
     Conv1D = Conv1d
     MaxPooling1D=Pooling
     model_m = Sequential(self.s)
     model_m.add(InputLayer(width=80*3, height=1, n_channels=1))
     model_m.add(Conv1D(100, 10, act='relu'))
     model_m.add(Conv1D(100, 10, act='relu'))
     model_m.add(MaxPooling1D(3))
     model_m.add(Conv1D(160, 10, act='relu'))
     model_m.add(Conv1D(160, 10, act='relu'))
     model_m.add(GlobalAveragePooling1D(dropout=0.5))
     model_m.add(OutputLayer(n=6, act='softmax'))
     # use assertEqual to check whether the layer output size matches the expected value for MaxPooling1D
     self.assertEqual(model_m.layers[3].output_size, (1, 80, 100))
     model_m.print_summary()
     # 1d print summary numerical check
     self.assertEqual(model_m.summary.iloc[1, -1], 240000)
예제 #20
0
    def test_model_crnn_bug(self):
        model = Sequential(self.s, model_table='crnn')
        model.add(InputLayer(3,256,16))
        model.add(Reshape(height=16,width=256,depth=3))

        model.add(Conv2d(64,3,3,stride=1,padding=1))                # size = 16x256x64
        model.add(Pooling(2,2,2))                                   # size = 8x128x64

        model.add(Conv2d(128,3,3,stride=1,padding=1))               # size = 8x128x128
        model.add(Pooling(2,2,2))                                   # size = 4x64x128

        model.add(Conv2d(256,3,3,stride=1,padding=1,act='IDENTITY')) # size = 4x64x256
        model.add(BN(act='RELU'))                   # size = 4x64x256

        model.add(Conv2d(256,3,3,stride=1,padding=1))              # size = 4x64x256


        model.add(Pooling(1,2,stride_horizontal=1, stride_vertical=2))



        #, padding=1))           #  size = 2x64x256
        #model.add(Pooling(1,2,stride=2,stride_horizontal=1, stride_vertical=2,))           # size = 2x64x256

        model.add(Conv2d(512,3,3,stride=1,padding=1, act='IDENTITY')) # size = 2x64x512
        model.add(BN(act='RELU'))

        model.add(Conv2d(512,3,3,stride=1,padding=1))              # size = 2x64x512
        model.add(Pooling(1,2,stride_horizontal=1, stride_vertical=2)) #, padding=1))           # size = 1x64x512
        #model.add(Pooling(1,2,stride=2,stride_horizontal=1, stride_vertical=2,))           # size = 1x64x512

        model.add(Conv2d(512,3,3,stride=1,padding=1, act='IDENTITY')) # size = 1x64x512
        model.add(BN(act='RELU'))

        model.add(Reshape(order='DWH',width=64, height=512, depth=1))

        model.add(Recurrent(512,output_type='SAMELENGTH'))

        model.add(OutputLayer(error='CTC'))

        model.print_summary()
예제 #21
0
    def setUp(self):
        swat.reset_option()
        swat.options.cas.print_messages = False
        swat.options.interactive_mode = False

        self.s = swat.CAS(HOST, PORT, USER, PASSWD, protocol=PROTOCOL)

        if type(self).server_type is None:
            # Set once per class and have every test use it. No need to change between tests.
            type(self).server_type = tm.get_cas_host_type(self.s)

        self.srcLib = tm.get_casout_lib(self.server_type)

        # Define the model
        model = Sequential(self.s, model_table='test_model')
        model.add(InputLayer(3, 224, 224, offsets=(0, 0, 0)))
        model.add(Conv2d(8, 7))
        model.add(Pooling(2))
        model.add(Conv2d(8, 7))
        model.add(Pooling(2))
        model.add(Dense(16))
        model.add(OutputLayer(act='softmax', n=2))

        self.model = model
예제 #22
0
def MobileNetV2_ONNX(conn,
                     model_file,
                     n_classes=1000,
                     width=224,
                     height=224,
                     offsets=(255 * 0.406, 255 * 0.456, 255 * 0.485),
                     norm_stds=(255 * 0.225, 255 * 0.224, 255 * 0.229),
                     random_flip=None,
                     random_crop=None,
                     random_mutation=None,
                     include_top=False):
    """
    Generates a deep learning model with the MobileNetV2_ONNX architecture.
    The model architecture and pre-trained weights is generated from MobileNetV2 ONNX trained on ImageNet dataset.
    The model file and the weights file can be downloaded from https://support.sas.com/documentation/prod-p/vdmml/zip/.
    To learn more information about the model and pre-processing.
    Please go to the websites: https://github.com/onnx/models/tree/master/vision/classification/mobilenet.

    Parameters
    ----------
    conn : CAS
        Specifies the CAS connection object.
    model_file : string
        Specifies the absolute server-side path of the model table file.
        The model table file can be downloaded from https://support.sas.com/documentation/prod-p/vdmml/zip/.
    n_classes : int, optional
        Specifies the number of classes.
        Default: 1000
    width : int, optional
        Specifies the width of the input layer.
        Default: 224
    height : int, optional
        Specifies the height of the input layer.
        Default: 224
    offsets : double or iter-of-doubles, optional
        Specifies an offset for each channel in the input data. The final input
        data is set after applying scaling and subtracting the specified offsets.
        The channel order is BGR.
        Default: (255*0.406, 255*0.456, 255*0.485)
    norm_stds : double or iter-of-doubles, optional
        Specifies a standard deviation for each channel in the input data.
        The final input data is normalized with specified means and standard deviations.
        The channel order is BGR.
        Default: (255*0.225, 255*0.224, 255*0.229)
    random_flip : string, optional
        Specifies how to flip the data in the input layer when image data is
        used. Approximately half of the input data is subject to flipping.
        Valid Values: 'h', 'hv', 'v', 'none'
    random_crop : string, optional
        Specifies how to crop the data in the input layer when image data is
        used. Images are cropped to the values that are specified in the width
        and height parameters. Only the images with one or both dimensions
        that are larger than those sizes are cropped.
        Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop'
    random_mutation : string, optional
        Specifies how to apply data augmentations/mutations to the data in the input layer.
        Valid Values: 'none', 'random'
    include_top : bool, optional
        Specifies whether to include pre-trained weights of the top layers (i.e., the FC layers)
        Default: False

    """
    parameters = locals()
    input_parameters = get_layer_options(input_layer_options, parameters)

    # load model and model weights
    model = Model.from_sashdat(conn, path=model_file)
    # check if a user points to a correct model.
    if model.summary.shape[0] != 120:
        raise DLPyError(
            "The model file doesn't point to a valid MobileNetV2_ONNX model. "
            "Please check the SASHDAT file.")
    # extract input layer config
    model_table_df = conn.CASTable(**model.model_table).to_frame()
    input_layer_df = model_table_df[model_table_df['_DLLayerID_'] == 0]
    input_layer = extract_input_layer(input_layer_df)
    input_layer_config = input_layer.config
    # update input layer config
    input_layer_config.update(input_parameters)
    # update the layer list
    model.layers[0] = InputLayer(**input_layer_config,
                                 name=model.layers[0].name)

    # warning if model weights doesn't exist
    if not conn.tableexists(model.model_weights.name).exists:
        weights_file_path = os.path.join(os.path.dirname(model_file),
                                         model.model_name + '_weights.sashdat')
        print('WARNING: Model weights is not attached '
              'since system cannot find a weights file located at {}'.format(
                  weights_file_path))

    if include_top:
        if n_classes != 1000:
            raise DLPyError(
                "If include_top is enabled, n_classes has to be 1000.")
    else:
        # since the output layer is non fully connected layer,
        # we need to modify the convolution right before the output. The number of filter is set to n_classes.
        conv_layer_df = model_table_df[model_table_df['_DLLayerID_'] == 118]
        conv_layer = extract_conv_layer(conv_layer_df)
        conv_layer_config = conv_layer.config
        # update input layer config
        conv_layer_config.update({'n_filters': n_classes})
        # update the layer list
        model.layers[-2] = Conv2d(**conv_layer_config,
                                  name=model.layers[-2].name,
                                  src_layers=model.layers[-3])

        # overwrite n_classes in output layer
        out_layer_df = model_table_df[model_table_df['_DLLayerID_'] == 119]
        out_layer = extract_output_layer(out_layer_df)
        out_layer_config = out_layer.config
        # update input layer config
        out_layer_config.update({'n': n_classes})
        # update the layer list
        model.layers[-1] = OutputLayer(**out_layer_config,
                                       name=model.layers[-1].name,
                                       src_layers=model.layers[-2])

        # remove top weights
        model.model_weights.append_where('_LayerID_<118')
        model._retrieve_('table.partition',
                         table=model.model_weights,
                         casout=dict(replace=True,
                                     name=model.model_weights.name))
        model.set_weights(model.model_weights.name)
    # recompile the whole network according to the new layer list
    model.compile()
    return model
예제 #23
0
def MobileNetV2(conn,
                model_table='MobileNetV2',
                n_classes=1000,
                n_channels=3,
                width=224,
                height=224,
                norm_stds=(255 * 0.229, 255 * 0.224, 255 * 0.225),
                offsets=(255 * 0.485, 255 * 0.456, 255 * 0.406),
                random_flip=None,
                random_crop=None,
                random_mutation=None,
                alpha=1):
    '''
    Generates a deep learning model with the MobileNetV2 architecture.
    The implementation is revised based on
    https://github.com/keras-team/keras-applications/blob/master/keras_applications/mobilenet_v2.py

    Parameters
    ----------
    conn : CAS
        Specifies the CAS connection object.
    model_table : string or dict or CAS table, optional
        Specifies the CAS table to store the deep learning model.
    n_classes : int, optional
        Specifies the number of classes. If None is assigned, the model will
        automatically detect the number of classes based on the training set.
        Default: 1000
    n_channels : int, optional
        Specifies the number of the channels (i.e., depth) of the input layer.
        Default: 3
    width : int, optional
        Specifies the width of the input layer.
        Default: 224
    height : int, optional
        Specifies the height of the input layer.
        Default: 224
    norm_stds : double or iter-of-doubles, optional
        Specifies a standard deviation for each channel in the input data.
        The final input data is normalized with specified means and standard deviations.
        Default: (255 * 0.229, 255 * 0.224, 255 * 0.225)
    offsets : double or iter-of-doubles, optional
        Specifies an offset for each channel in the input data. The final input
        data is set after applying scaling and subtracting the specified offsets.
        Default: (255*0.485, 255*0.456, 255*0.406)
    random_flip : string, optional
        Specifies how to flip the data in the input layer when image data is
        used. Approximately half of the input data is subject to flipping.
        Valid Values: 'h', 'hv', 'v', 'none'
    random_crop : string, optional
        Specifies how to crop the data in the input layer when image data is
        used. Images are cropped to the values that are specified in the width
        and height parameters. Only the images with one or both dimensions
        that are larger than those sizes are cropped.
        Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop'
    random_mutation : string, optional
        Specifies how to apply data augmentations/mutations to the data in the input layer.
        Valid Values: 'none', 'random'
    alpha : int, optional
        Specifies the width multiplier in the MobileNet paper
        Default: 1

    alpha : int, optional

    Returns
    -------
    :class:`Model`

    References
    ----------
    https://arxiv.org/abs/1801.04381

    '''
    def _make_divisible(v, divisor, min_value=None):
        # make number of channel divisible
        if min_value is None:
            min_value = divisor
        new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
        # Make sure that round down does not go down by more than 10%.
        if new_v < 0.9 * v:
            new_v += divisor
        return new_v

    def _inverted_res_block(inputs, in_channels, expansion, stride, alpha,
                            filters, block_id):
        """
        Inverted Residual Block

        Parameters
        ----------
        inputs:
            Input tensor
        in_channels:
            Specifies the number of input tensor's channel
        expansion:
            expansion factor always applied to the input size.
        stride:
            the strides of the convolution
        alpha:
            width multiplier.
        filters:
            the dimensionality of the output space.
        block_id:
            block id used for naming layers

        """
        pointwise_conv_filters = int(filters * alpha)
        pointwise_filters = _make_divisible(pointwise_conv_filters, 8)
        x = inputs
        prefix = 'block_{}_'.format(block_id)
        n_groups = in_channels

        if block_id:
            # Expand
            n_groups = expansion * in_channels
            x = Conv2d(expansion * in_channels,
                       1,
                       include_bias=False,
                       act='identity',
                       name=prefix + 'expand')(x)
            x = BN(name=prefix + 'expand_BN', act='identity')(x)
        else:
            prefix = 'expanded_conv_'

        # Depthwise
        x = GroupConv2d(n_groups,
                        n_groups,
                        3,
                        stride=stride,
                        act='identity',
                        include_bias=False,
                        name=prefix + 'depthwise')(x)
        x = BN(name=prefix + 'depthwise_BN', act='relu')(x)

        # Project
        x = Conv2d(pointwise_filters,
                   1,
                   include_bias=False,
                   act='identity',
                   name=prefix + 'project')(x)
        x = BN(name=prefix + 'project_BN',
               act='identity')(x)  # identity activation on narrow tensor

        if in_channels == pointwise_filters and stride == 1:
            return Res(name=prefix + 'add')([inputs, x]), pointwise_filters
        return x, pointwise_filters

    parameters = locals()
    input_parameters = get_layer_options(input_layer_options, parameters)
    inp = Input(**input_parameters, name='data')
    # compared with mobilenetv1, v2 introduces inverted residual structure.
    # and Non-linearities in narrow layers are removed.
    # inverted residual block does three convolutins: first is 1*1 convolution, second is depthwise convolution,
    # third is 1*1 convolution but without any non-linearity
    first_block_filters = _make_divisible(32 * alpha, 8)
    x = Conv2d(first_block_filters,
               3,
               stride=2,
               include_bias=False,
               name='Conv1',
               act='identity')(inp)
    x = BN(name='bn_Conv1', act='relu')(x)

    x, n_channels = _inverted_res_block(x,
                                        first_block_filters,
                                        filters=16,
                                        alpha=alpha,
                                        stride=1,
                                        expansion=1,
                                        block_id=0)

    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=24,
                                        alpha=alpha,
                                        stride=2,
                                        expansion=6,
                                        block_id=1)
    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=24,
                                        alpha=alpha,
                                        stride=1,
                                        expansion=6,
                                        block_id=2)

    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=32,
                                        alpha=alpha,
                                        stride=2,
                                        expansion=6,
                                        block_id=3)
    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=32,
                                        alpha=alpha,
                                        stride=1,
                                        expansion=6,
                                        block_id=4)
    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=32,
                                        alpha=alpha,
                                        stride=1,
                                        expansion=6,
                                        block_id=5)

    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=64,
                                        alpha=alpha,
                                        stride=2,
                                        expansion=6,
                                        block_id=6)
    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=64,
                                        alpha=alpha,
                                        stride=1,
                                        expansion=6,
                                        block_id=7)
    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=64,
                                        alpha=alpha,
                                        stride=1,
                                        expansion=6,
                                        block_id=8)
    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=64,
                                        alpha=alpha,
                                        stride=1,
                                        expansion=6,
                                        block_id=9)

    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=96,
                                        alpha=alpha,
                                        stride=1,
                                        expansion=6,
                                        block_id=10)
    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=96,
                                        alpha=alpha,
                                        stride=1,
                                        expansion=6,
                                        block_id=11)
    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=96,
                                        alpha=alpha,
                                        stride=1,
                                        expansion=6,
                                        block_id=12)

    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=160,
                                        alpha=alpha,
                                        stride=2,
                                        expansion=6,
                                        block_id=13)
    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=160,
                                        alpha=alpha,
                                        stride=1,
                                        expansion=6,
                                        block_id=14)
    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=160,
                                        alpha=alpha,
                                        stride=1,
                                        expansion=6,
                                        block_id=15)

    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=320,
                                        alpha=alpha,
                                        stride=1,
                                        expansion=6,
                                        block_id=16)

    # no alpha applied to last conv as stated in the paper:
    # if the width multiplier is greater than 1 we increase the number of output channels
    if alpha > 1.0:
        last_block_filters = _make_divisible(1280 * alpha, 8)
    else:
        last_block_filters = 1280

    x = Conv2d(last_block_filters,
               1,
               include_bias=False,
               name='Conv_1',
               act='identity')(x)
    x = BN(name='Conv_1_bn', act='relu')(x)

    x = GlobalAveragePooling2D(name="Global_avg_pool")(x)
    x = OutputLayer(n=n_classes)(x)

    model = Model(conn, inp, x, model_table)
    model.compile()

    return model
예제 #24
0
def MobileNetV1(conn,
                model_table='MobileNetV1',
                n_classes=1000,
                n_channels=3,
                width=224,
                height=224,
                random_flip=None,
                random_crop=None,
                random_mutation=None,
                norm_stds=(255 * 0.229, 255 * 0.224, 255 * 0.225),
                offsets=(255 * 0.485, 255 * 0.456, 255 * 0.406),
                alpha=1,
                depth_multiplier=1):
    '''
    Generates a deep learning model with the MobileNetV1 architecture.
    The implementation is revised based on
    https://github.com/keras-team/keras-applications/blob/master/keras_applications/mobilenet.py

    Parameters
    ----------
    conn : CAS
        Specifies the CAS connection object.
    model_table : string or dict or CAS table, optional
        Specifies the CAS table to store the deep learning model.
    n_classes : int, optional
        Specifies the number of classes. If None is assigned, the model will
        automatically detect the number of classes based on the training set.
        Default: 1000
    n_channels : int, optional
        Specifies the number of the channels (i.e., depth) of the input layer.
        Default: 3
    width : int, optional
        Specifies the width of the input layer.
        Default: 32
    height : int, optional
        Specifies the height of the input layer.
        Default: 32
    random_flip : string, optional
        Specifies how to flip the data in the input layer when image data is
        used. Approximately half of the input data is subject to flipping.
        Valid Values: 'h', 'hv', 'v', 'none'
    random_crop : string, optional
        Specifies how to crop the data in the input layer when image data is
        used. Images are cropped to the values that are specified in the width
        and height parameters. Only the images with one or both dimensions
        that are larger than those sizes are cropped.
        Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop'
    random_mutation : string, optional
        Specifies how to apply data augmentations/mutations to the data in the input layer.
        Valid Values: 'none', 'random'
    norm_stds : double or iter-of-doubles, optional
        Specifies a standard deviation for each channel in the input data.
        The final input data is normalized with specified means and standard deviations.
        Default: (255*0.229, 255*0.224, 255*0.225)
    offsets : double or iter-of-doubles, optional
        Specifies an offset for each channel in the input data. The final input
        data is set after applying scaling and subtracting the specified offsets.
        Default: (255*0.485, 255*0.456, 255*0.406)
    alpha : int, optional
        Specifies the width multiplier in the MobileNet paper
        Default: 1
    depth_multiplier : int, optional
        Specifies the number of depthwise convolution output channels for each input channel.
        Default: 1

    Returns
    -------
    :class:`Model`

    References
    ----------
    https://arxiv.org/pdf/1605.07146.pdf

    '''
    def _conv_block(inputs, filters, alpha, kernel=3, stride=1):
        """
        Adds an initial convolution layer (with batch normalization

        inputs:
            Input tensor
        filters:
            the dimensionality of the output space
        alpha: controls the width of the network.
            - If `alpha` < 1.0, proportionally decreases the number
                of filters in each layer.
            - If `alpha` > 1.0, proportionally increases the number
                of filters in each layer.
            - If `alpha` = 1, default number of filters from the paper
                 are used at each layer.
        kernel:
            specifying the width and height of the 2D convolution window.
        strides:
            the strides of the convolution

        """
        filters = int(filters * alpha)
        x = Conv2d(filters,
                   kernel,
                   act='identity',
                   include_bias=False,
                   stride=stride,
                   name='conv1')(inputs)
        x = BN(name='conv1_bn', act='relu')(x)
        return x, filters

    def _depthwise_conv_block(inputs,
                              n_groups,
                              pointwise_conv_filters,
                              alpha,
                              depth_multiplier=1,
                              stride=1,
                              block_id=1):
        """Adds a depthwise convolution block.

        inputs:
            Input tensor
        n_groups : int
            number of groups
        pointwise_conv_filters:
            the dimensionality of the output space
        alpha: controls the width of the network.
            - If `alpha` < 1.0, proportionally decreases the number
                of filters in each layer.
            - If `alpha` > 1.0, proportionally increases the number
                of filters in each layer.
            - If `alpha` = 1, default number of filters from the paper
                 are used at each layer.
        depth_multiplier:
            The number of depthwise convolution output channels
        strides: An integer or tuple/list of 2 integers,
            specifying the strides of the convolution
        block_id: Integer, a unique identification designating
            the block number.

        """
        pointwise_conv_filters = int(pointwise_conv_filters * alpha)

        x = GroupConv2d(n_groups * depth_multiplier,
                        n_groups,
                        3,
                        stride=stride,
                        act='identity',
                        include_bias=False,
                        name='conv_dw_%d' % block_id)(inputs)
        x = BN(name='conv_dw_%d_bn' % block_id, act='relu')(x)

        x = Conv2d(pointwise_conv_filters,
                   1,
                   act='identity',
                   include_bias=False,
                   stride=1,
                   name='conv_pw_%d' % block_id)(x)
        x = BN(name='conv_pw_%d_bn' % block_id, act='relu')(x)
        return x, pointwise_conv_filters

    parameters = locals()
    input_parameters = get_layer_options(input_layer_options, parameters)
    inp = Input(**input_parameters, name='data')
    # the model down-sampled for 5 times by performing stride=2 convolution on
    # conv_dw_1, conv_dw_2, conv_dw_4, conv_dw_6, conv_dw_12
    # for each block, we use depthwise convolution with kernel=3 and point-wise convolution to save computation
    x, depth = _conv_block(inp, 32, alpha, stride=2)
    x, depth = _depthwise_conv_block(x,
                                     depth,
                                     64,
                                     alpha,
                                     depth_multiplier,
                                     block_id=1)

    x, depth = _depthwise_conv_block(x,
                                     depth,
                                     128,
                                     alpha,
                                     depth_multiplier,
                                     stride=2,
                                     block_id=2)
    x, depth = _depthwise_conv_block(x,
                                     depth,
                                     128,
                                     alpha,
                                     depth_multiplier,
                                     block_id=3)

    x, depth = _depthwise_conv_block(x,
                                     depth,
                                     256,
                                     alpha,
                                     depth_multiplier,
                                     stride=2,
                                     block_id=4)
    x, depth = _depthwise_conv_block(x,
                                     depth,
                                     256,
                                     alpha,
                                     depth_multiplier,
                                     block_id=5)

    x, depth = _depthwise_conv_block(x,
                                     depth,
                                     512,
                                     alpha,
                                     depth_multiplier,
                                     stride=2,
                                     block_id=6)
    x, depth = _depthwise_conv_block(x,
                                     depth,
                                     512,
                                     alpha,
                                     depth_multiplier,
                                     block_id=7)
    x, depth = _depthwise_conv_block(x,
                                     depth,
                                     512,
                                     alpha,
                                     depth_multiplier,
                                     block_id=8)
    x, depth = _depthwise_conv_block(x,
                                     depth,
                                     512,
                                     alpha,
                                     depth_multiplier,
                                     block_id=9)
    x, depth = _depthwise_conv_block(x,
                                     depth,
                                     512,
                                     alpha,
                                     depth_multiplier,
                                     block_id=10)
    x, depth = _depthwise_conv_block(x,
                                     depth,
                                     512,
                                     alpha,
                                     depth_multiplier,
                                     block_id=11)

    x, depth = _depthwise_conv_block(x,
                                     depth,
                                     1024,
                                     alpha,
                                     depth_multiplier,
                                     stride=2,
                                     block_id=12)
    x, depth = _depthwise_conv_block(x,
                                     depth,
                                     1024,
                                     alpha,
                                     depth_multiplier,
                                     block_id=13)

    x = GlobalAveragePooling2D(name="Global_avg_pool")(x)
    x = OutputLayer(n=n_classes)(x)

    model = Model(conn, inp, x, model_table)
    model.compile()

    return model
예제 #25
0
 def test_summary_function(self):
     ol = OutputLayer(name='output', n=100)
     self.assertTrue(ol.summary['Output Size'][0] == 100)
예제 #26
0
 def test_output_layer2(self):
     if not __dev__:
         with self.assertRaises(DLPyError):
             OutputLayer(not_a_parameter=1)
예제 #27
0
 def test_output_layer1(self):
     dict1 = OutputLayer(name='output',
                         n=100,
                         src_layers=[Pooling(name='pool')
                                     ]).to_model_params()
     self.assertTrue(self.sample_syntax['output1'] == dict1)
예제 #28
0
def VGG19(conn,
          model_table='VGG19',
          n_classes=1000,
          n_channels=3,
          width=224,
          height=224,
          scale=1,
          random_flip=None,
          random_crop=None,
          offsets=(103.939, 116.779, 123.68),
          pre_trained_weights=False,
          pre_trained_weights_file=None,
          include_top=False,
          random_mutation=None):
    '''
    Generates a deep learning model with the VGG19 architecture.

    Parameters
    ----------
    conn : CAS
        Specifies the CAS connection object.
    model_table : string, optional
        Specifies the name of CAS table to store the model.
    n_classes : int, optional
        Specifies the number of classes. If None is assigned, the model will
        automatically detect the number of classes based on the training set.
        Default: 1000
    n_channels : int, optional
        Specifies the number of the channels (i.e., depth) of the input layer.
        Default: 3
    width : int, optional
        Specifies the width of the input layer.
        Default: 224
    height : int, optional
        Specifies the height of the input layer.
        Default: 224
    scale : double, optional
        Specifies a scaling factor to be applied to each pixel intensity values.
        Default: 1
    random_flip : string, optional
        Specifies how to flip the data in the input layer when image data is
        used. Approximately half of the input data is subject to flipping.
        Valid Values: 'h', 'hv', 'v', 'none'
    random_crop : string, optional
        Specifies how to crop the data in the input layer when image data is
        used. Images are cropped to the values that are specified in the width
        and height parameters. Only the images with one or both dimensions
        that are larger than those sizes are cropped.
        Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop'
    offsets : double or iter-of-doubles, optional
        Specifies an offset for each channel in the input data. The final input
        data is set after applying scaling and subtracting the specified offsets.
        Default: (103.939, 116.779, 123.68)
    pre_trained_weights : bool, optional
        Specifies whether to use the pre-trained weights trained on the ImageNet data set.
        Default: False
    pre_trained_weights_file : string, optional
        Specifies the file name for the pre-trained weights.
        Must be a fully qualified file name of SAS-compatible file (e.g., *.caffemodel.h5)
        Note: Required when pre_trained_weights=True.
    include_top : bool, optional
        Specifies whether to include pre-trained weights of the top layers (i.e., the FC layers).
        Default: False
    random_mutation : string, optional
        Specifies how to apply data augmentations/mutations to the data in the input layer.
        Valid Values: 'none', 'random'

    Returns
    -------
    :class:`Sequential`
        If `pre_trained_weights` is False
    :class:`Model`
        If `pre_trained_weights` is True

    References
    ----------
    https://arxiv.org/pdf/1409.1556.pdf

    '''
    conn.retrieve('loadactionset',
                  _messagelevel='error',
                  actionset='deeplearn')

    # get all the parms passed in
    parameters = locals()

    if not pre_trained_weights:
        model = Sequential(conn=conn, model_table=model_table)

        # get the input parameters
        input_parameters = get_layer_options(input_layer_options, parameters)
        model.add(InputLayer(**input_parameters))

        model.add(Conv2d(n_filters=64, width=3, height=3, stride=1))
        model.add(Conv2d(n_filters=64, width=3, height=3, stride=1))
        model.add(Pooling(width=2, height=2, stride=2, pool='max'))

        model.add(Conv2d(n_filters=128, width=3, height=3, stride=1))
        model.add(Conv2d(n_filters=128, width=3, height=3, stride=1))
        model.add(Pooling(width=2, height=2, stride=2, pool='max'))

        model.add(Conv2d(n_filters=256, width=3, height=3, stride=1))
        model.add(Conv2d(n_filters=256, width=3, height=3, stride=1))
        model.add(Conv2d(n_filters=256, width=3, height=3, stride=1))
        model.add(Conv2d(n_filters=256, width=3, height=3, stride=1))
        model.add(Pooling(width=2, height=2, stride=2, pool='max'))

        model.add(Conv2d(n_filters=512, width=3, height=3, stride=1))
        model.add(Conv2d(n_filters=512, width=3, height=3, stride=1))
        model.add(Conv2d(n_filters=512, width=3, height=3, stride=1))
        model.add(Conv2d(n_filters=512, width=3, height=3, stride=1))
        model.add(Pooling(width=2, height=2, stride=2, pool='max'))

        model.add(Conv2d(n_filters=512, width=3, height=3, stride=1))
        model.add(Conv2d(n_filters=512, width=3, height=3, stride=1))
        model.add(Conv2d(n_filters=512, width=3, height=3, stride=1))
        model.add(Conv2d(n_filters=512, width=3, height=3, stride=1))
        model.add(Pooling(width=2, height=2, stride=2, pool='max'))

        model.add(Dense(n=4096, dropout=0.5))
        model.add(Dense(n=4096, dropout=0.5))

        model.add(OutputLayer(n=n_classes))

        return model

    else:
        if pre_trained_weights_file is None:
            raise DLPyError(
                '\nThe pre-trained weights file is not specified.\n'
                'Please follow the steps below to attach the pre-trained weights:\n'
                '1. Go to the website https://support.sas.com/documentation/prod-p/vdmml/zip/ '
                'and download the associated weight file.\n'
                '2. Upload the *.h5 file to '
                'a server side directory which the CAS session has access to.\n'
                '3. Specify the pre_trained_weights_file using the fully qualified server side path.'
            )

        model_cas = model_vgg19.VGG19_Model(s=conn,
                                            model_table=model_table,
                                            n_channels=n_channels,
                                            width=width,
                                            height=height,
                                            random_crop=random_crop,
                                            offsets=offsets,
                                            random_flip=random_flip,
                                            random_mutation=random_mutation)

        if include_top:
            if n_classes != 1000:
                warnings.warn(
                    'If include_top = True, n_classes will be set to 1000.',
                    RuntimeWarning)

            model = Model.from_table(model_cas)
            model.load_weights(path=pre_trained_weights_file, labels=True)
            return model

        else:

            model = Model.from_table(model_cas, display_note=False)
            model.load_weights(path=pre_trained_weights_file)

            weight_table_options = model.model_weights.to_table_params()
            weight_table_options.update(dict(where='_LayerID_<22'))
            model._retrieve_('table.partition',
                             table=weight_table_options,
                             casout=dict(
                                 replace=True,
                                 **model.model_weights.to_table_params()))
            model._retrieve_('deeplearn.removelayer',
                             model=model_table,
                             name='fc8')
            model._retrieve_('deeplearn.addlayer',
                             model=model_table,
                             name='fc8',
                             layer=dict(type='output',
                                        n=n_classes,
                                        act='softmax'),
                             srcLayers=['fc7'])
            model = Model.from_table(conn.CASTable(model_table))

            return model
예제 #29
0
def VGG11(conn,
          model_table='VGG11',
          n_classes=1000,
          n_channels=3,
          width=224,
          height=224,
          scale=1,
          random_flip=None,
          random_crop=None,
          offsets=(103.939, 116.779, 123.68),
          random_mutation=None):
    '''
    Generates a deep learning model with the VGG11 architecture.

    Parameters
    ----------
    conn : CAS
        Specifies the CAS connection object.
    model_table : string, optional
        Specifies the name of CAS table to store the model.
    n_classes : int, optional
        Specifies the number of classes. If None is assigned, the model will
        automatically detect the number of classes based on the training set.
        Default: 1000
    n_channels : int, optional
        Specifies the number of the channels (i.e., depth) of the input layer.
        Default: 3
    width : int, optional
        Specifies the width of the input layer.
        Default: 224
    height : int, optional
        Specifies the height of the input layer.
        Default: 224
    scale : double, optional
        Specifies a scaling factor to be applied to each pixel intensity values.
        Default: 1
    random_flip : string, optional
        Specifies how to flip the data in the input layer when image data is
        used. Approximately half of the input data is subject to flipping.
        Valid Values: 'h', 'hv', 'v', 'none'
    random_crop : string, optional
        Specifies how to crop the data in the input layer when image data is
        used. Images are cropped to the values that are specified in the width
        and height parameters. Only the images with one or both dimensions
        that are larger than those sizes are cropped.
        Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop'
    offsets : double or iter-of-doubles, optional
        Specifies an offset for each channel in the input data. The final
        input data is set after applying scaling and subtracting the
        specified offsets.
        Default: (103.939, 116.779, 123.68)
    random_mutation : string, optional
        Specifies how to apply data augmentations/mutations to the data in the input layer.
        Valid Values: 'none', 'random'

    Returns
    -------
    :class:`Sequential`

    References
    ----------
    https://arxiv.org/pdf/1409.1556.pdf

    '''
    conn.retrieve('loadactionset',
                  _messagelevel='error',
                  actionset='deeplearn')

    # get all the parms passed in
    parameters = locals()

    model = Sequential(conn=conn, model_table=model_table)

    # get the input parameters
    input_parameters = get_layer_options(input_layer_options, parameters)
    model.add(InputLayer(**input_parameters))

    model.add(Conv2d(n_filters=64, width=3, height=3, stride=1))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))

    model.add(Conv2d(n_filters=128, width=3, height=3, stride=1))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))

    model.add(Conv2d(n_filters=256, width=3, height=3, stride=1))
    model.add(Conv2d(n_filters=256, width=3, height=3, stride=1))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))

    model.add(Conv2d(n_filters=512, width=3, height=3, stride=1))
    model.add(Conv2d(n_filters=512, width=3, height=3, stride=1))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))

    model.add(Conv2d(n_filters=512, width=3, height=3, stride=1))
    model.add(Conv2d(n_filters=512, width=3, height=3, stride=1))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))

    model.add(Dense(n=4096, dropout=0.5))
    model.add(Dense(n=4096, dropout=0.5))

    model.add(OutputLayer(n=n_classes))

    return model
예제 #30
0
def EfficientNet(conn, model_table='EfficientNet', n_classes=100, n_channels=3, width=224, height=224,
                 width_coefficient=1, depth_coefficient=1, dropout_rate=0.2, drop_connect_rate=0, depth_divisor=8,
                 activation_fn='relu', blocks_args=_MBConv_BLOCKS_ARGS,
                 offsets=(255*0.406, 255*0.456, 255*0.485), norm_stds=(255*0.225, 255*0.224, 255*0.229),
                 random_flip=None, random_crop=None, random_mutation=None):
    '''
    Generates a deep learning model with the EfficientNet architecture.
    The implementation is revised based on
    https://github.com/keras-team/keras-applications/blob/master/keras_applications/efficientnet.py

    Parameters
    ----------
    conn : CAS
        Specifies the CAS connection object.
    model_table : string or dict or CAS table, optional
        Specifies the CAS table to store the deep learning model.
    n_classes : int, optional
        Specifies the number of classes. If None is assigned, the model will
        automatically detect the number of classes based on the training set.
        Default: 1000
    n_channels : int, optional
        Specifies the number of the channels (i.e., depth) of the input layer.
        Default: 3
    width : int, optional
        Specifies the width of the input layer.
        Default: 224
    height : int, optional
        Specifies the height of the input layer.
        Default: 224
    width_coefficient: double, optional
        Specifies the scale coefficient for network width.
        Default: 1.0
    depth_coefficient: double, optional
        Specifies the scale coefficient for network depth.
        Default: 1.0
    dropout_rate: double, optional
        Specifies the dropout rate before final classifier layer.
        Default: 0.2
    drop_connect_rate: double, optional
        Specifies the dropout rate at skip connections.
        Default: 0.0
    depth_divisor: integer, optional
        Specifies the unit of network width.
        Default: 8
    activation_fn: string, optional
        Specifies the activation function
    blocks_args: list of dicts
         Specifies parameters to construct blocks for the efficientnet model.
    offsets : double or iter-of-doubles, optional
        Specifies an offset for each channel in the input data. The final input
        data is set after applying scaling and subtracting the specified offsets.
        Default: (255*0.406, 255*0.456, 255*0.485)
    norm_stds : double or iter-of-doubles, optional
        Specifies a standard deviation for each channel in the input data.
        The final input data is normalized with specified means and standard deviations.
        Default: (255*0.225, 255*0.224, 255*0.229)
    random_flip : string, optional
        Specifies how to flip the data in the input layer when image data is
        used. Approximately half of the input data is subject to flipping.
        Valid Values: 'h', 'hv', 'v', 'none'
    random_crop : string, optional
        Specifies how to crop the data in the input layer when image data is
        used. Images are cropped to the values that are specified in the width
        and height parameters. Only the images with one or both dimensions
        that are larger than those sizes are cropped.
        Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop'
    random_mutation : string, optional
        Specifies how to apply data augmentations/mutations to the data in the input layer.
        Valid Values: 'none', 'random'


    Returns
    -------
    :class:`Model`

    References
    ----------
    https://arxiv.org/pdf/1905.11946.pdf

    '''

    def round_filters(filters, width_coefficient, depth_divisor):
        '''
        round the number of the scaled width, which is for width scaling in efficientnet.
        Parameters
        ----------
        filters: integer
            Specifies the number of filters.
        width_coefficient: double
            Specifies the scale coefficient for network width.
        depth_divisor: integer
            Specifies the unit of network width.
        '''

        filters *= width_coefficient
        new_filters = int(filters + depth_divisor / 2) // depth_divisor * depth_divisor
        new_filters = max(depth_divisor, new_filters)
        # Make sure that round down does not go down by more than 10%.
        if new_filters < 0.9 * filters:
            new_filters += depth_divisor
        return int(new_filters)

    def round_repeats(repeats, depth_coefficient):
        '''
        round the number of the scaled depth, which is for depth scaling in effcientnet.
        Parameters
        ----------
        repeats: integer
            Specifies the number of repeats for a block.
        depth_coefficient: double
            Specifies the scale coefficient for a block.
        '''

        return int(math.ceil(depth_coefficient * repeats))

    def _MBConvBlock(inputs, in_channels, out_channels, ksize, stride, expansion, se_ratio, stage_id, block_id,
                     noskip=False, activation_fn='relu'):
        '''
        Inverted Residual Block

        Parameters
        ----------
        inputs: input tensor
            Speecify input tensor for block.
        in_channels: integer
            Specifies the number of input tensor's channel.
        out_channels: integer
            Specifies the number of output tensor's channel
        ksize:
            Specifies the kernel size of the convolution
        stride: integer
            Specifies the stride of the convolution
        expansion: double
            Specifies the expansion factor for the input layer.
        se_ratio: double
            Specifies the ratio to squeeze the input filters for squeeze-and-excitation block.
        stage_id: integer
            Specifies stage id for naming layers
        block_id:
            Specifies block id for naming layers
        noskip: bool
            Specifies whether the skip connection is used. By default, the skip connection is used.
        activation_fn:
            Specifies activation function
        '''

        # mobilenetv2 block is also known as inverted residual block, which consists of three convolutions:
        # the first is 1*1 convolution for expansion
        # the second is depthwise convolution
        # the third is 1*1 convolution without any non-linearity for projection

        x = inputs
        prefix = 'stage_{}_block_{}'.format(stage_id, block_id)
        n_groups = in_channels  # for expansion=1, n_groups might be different from pointwise_filters

        if expansion > 1:
            # For MobileNet V2, expansion>1 when stage>0
            n_groups = int(expansion * in_channels)  ## update n_groups
            x = Conv2d(n_groups, 1, include_bias=False, act='identity',
                       name=prefix + 'expand')(x)
            x = BN(name=prefix + 'expand_BN', act='identity')(x)

        # Depthwise convolution
        x = GroupConv2d(n_groups, n_groups, ksize, stride=stride, act='identity',
                        include_bias=False, name=prefix + 'depthwise')(x)
        x = BN(name=prefix + 'depthwise_BN', act=activation_fn)(x)

        # Squeeze-Excitation
        if 0 < se_ratio <= 1:
            se_input = x  # features to be squeezed
            x = GlobalAveragePooling2D(name=prefix + "global_avg_pool")(x)
            # Squeeze
            channels_se = max(1, int(in_channels * se_ratio))
            x = Conv2d(channels_se, 1, include_bias=True, act=activation_fn, name=prefix + 'squeeze')(x)
            x = Conv2d(n_groups, 1, include_bias=True, act='sigmoid', name=prefix + 'excitation')(x)
            x = Reshape(name=prefix + 'reshape', width=n_groups, height=1, depth=1)(x)
            x = Scale(name=prefix + 'scale')([se_input, x])  # x = out*w

        # Project
        x = Conv2d(out_channels, 1, include_bias=False, act='identity', name=prefix + 'project')(x)
        x = BN(name=prefix + 'project_BN', act='identity')(x)  # identity activation on narrow tensor
        # Prepare output for MBConv block
        if in_channels == out_channels and stride == 1 and (not noskip):
            # dropout can be added.
            return Res(name=prefix + 'add_se_residual')([x, inputs])
        else:
            return x

    parameters = locals()
    input_parameters = get_layer_options(input_layer_options, parameters)
    inp = Input(**input_parameters, name='data')
    # refer to Table 1  "EfficientNet-B0 baseline network" in paper:
    # "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks"
    stage_id = 0
    out_channels = round_filters(32, width_coefficient,
                                 depth_divisor)  # multiply with width multiplier: width_coefficient
    x = Conv2d(out_channels, 3, stride=2, include_bias=False, name='Conv1', act='identity')(inp)
    x = BN(name='bn_Conv1', act=activation_fn)(x)

    # Create stages with MBConv blocks from stage 1
    in_channels = out_channels  # number of input channels for first MBblock
    stage_id +=1
    total_blocks = float(sum(args[2] for args in blocks_args))
    for expansion, out_channels, num_blocks, ksize, stride, se_ratio in blocks_args:
        out_channels = round_filters(out_channels, width_coefficient, depth_divisor)
        num_blocks = round_repeats(num_blocks, depth_coefficient)
        strides = [stride] + [1] * (num_blocks - 1)
        for block_id, stride in enumerate(strides):
            x = _MBConvBlock(x, in_channels, out_channels, ksize, stride, expansion, se_ratio, stage_id, block_id,activation_fn)
            in_channels = out_channels  # out_channel
        stage_id += 1

    last_block_filters = round_filters(1280, width_coefficient, depth_divisor)
    x = Conv2d(last_block_filters, 1, include_bias=False, name='Conv_top', act='identity')(x)
    x = BN(name='Conv_top_bn', act=activation_fn)(x)

    x = GlobalAveragePooling2D(name="Global_avg_pool", dropout=dropout_rate)(x)
    x = OutputLayer(n=n_classes)(x)

    model = Model(conn, inp, x, model_table)
    model.compile()
    return model