예제 #1
0
    def image_to_internal(self, image: Imagelike) -> torch.Tensor:
        """Transform an image into a torch Tensor.
        """
        if isinstance(image, torch.Tensor):
            image_tensor = image

        elif isinstance(image, np.ndarray):
            # at this point we need to know the range (if further
            # preprocessing, e.g., normalization, is required ...)
            if False and (0 <= image).all():
                if (image <= 1).all():  # image is range 0.0 - 1.0
                    pass
                elif (image <= 255).all():  # image is range 0 - 255
                    pass

            # Question: channel first or channel last?
            # H X W X C  ==>   C X H X W
            #  image = np.transpose(image, (2, 0, 1))

            # preprocess_numpy expects numpy.ndarray of correct size,
            # dtype float and values in range [0.0, 1.0].
            # It performs the following operations:
            #  1. [no resizing]
            #  2. numpy.ndarray -> torch.Tensor
            #  3. normalization [0.0, 1.0] -> torch.imagenet_range
            image_tensor = self.preprocess_numpy(image)

            # old: explicit transformation:
            # H X W X C  ==>   C X H X W
            # image = np.transpose(image, (2, 0, 1))
            #
            # image = torch.from_numpy(image)
            # image = image.add(-self.imagenet_mean_.view(3, 1, 1)).\
            #     div(self.imagenet_std_.view(3, 1, 1))
            #
            # add batch dimension:  C X H X W ==> B X C X H X W
            # image = image.unsqueeze(0)

        else:
            # the _image_to_internal function expects as input a PIL image!
            image = Image.as_pil(image)

            # image should be PIL Image. Got <class 'numpy.ndarray'>
            image_tensor = self._image_to_internal(image)

        if image_tensor.dim() == 4:
            # image is already batch
            image_batch = image_tensor
        elif image_tensor.dim() == 3:
            # create a mini-batch as expected by the model
            # by adding a batch dimension:  C X H X W ==> B X C X H X W
            image_batch = image_tensor.unsqueeze(0)
        else:
            raise ValueError(f"Data of invalid shape {image.shape} cannot "
                             "be transformed into an internal torch image.")

        # move the input and model to GPU for speed if available
        image_batch = image_batch.to(self._device)

        return image_batch
예제 #2
0
    def test_pillow(self):
        """Test :py:class:`Size` type.
        """
        module = importlib.import_module('dltb.thirdparty.pil')
        self.assertIn('pil', Image.supported_formats())

        image = Image(self.example_image_filename)
        pil = Image.as_pil(image)
        self.assertIsInstance(pil, module.PIL.Image.Image)