예제 #1
0
def training_set(events_file: str, no_event_time_shift: int, table_name: str,
                 directory):
    logging.info('start')

    # stiahnutie dat
    con = ConnectionUtil.create_con()
    storage = Storage(events_file, no_event_time_shift, table_name)
    d = storage.load_data(con, 0, 0, 'co2_in_ppm')
    logging.info('downloaded events: %d' % len(d))

    # aplikovanie filtrov na eventy
    filtered = FilterUtil.only_valid_events(d)

    # for travis
    no_ev_records = no_events_records
    if ConnectionUtil.is_testable_system():
        filtered = filtered[:ConnectionUtil.MAX_TESTABLE_EVENTS]
        no_ev_records = no_events_records[:ConnectionUtil.MAX_TESTABLE_EVENTS]

    logging.info('events after applying the filter: %d' % len(filtered))

    # selector pre data
    row_selector = CachedDiffRowWithIntervalSelector(con, table_name, 0, 0)
    interval_selector = None

    # trenovacia mnozina
    logging.info('start computing of training set')
    training, tr_events = AttributeUtil.cached_training_data(
        con, table_name, filtered, func, row_selector, interval_selector,
        'open', '{0}/training_cached.csv'.format(directory))
    count = len(training)
    logging.info('training set contains %d events (%d records)' %
                 (count / 2, count))

    GraphUtil.gen_duration_histogram(tr_events, 'save', ['png'],
                                     'Histogram dlzok vetrania',
                                     [x for x in range(5, 60, 5)], 1)

    training2 = AttributeUtil.additional_training_set(con, table_name,
                                                      no_ev_records, func,
                                                      row_selector,
                                                      interval_selector)
    count2 = len(training2)
    logging.info('additional training set contains %d records' % count2)

    logging.info('end computing of training set')

    logging.info('start preparing file of training set')
    balanced = AttributeUtil.balance_set(training, training2)
    CSVUtil.create_csv_file(balanced, '{0}/training.csv'.format(directory))
    logging.info('end preparing file of training set')
예제 #2
0
def training_set(events_file: str, no_event_time_shift: int, table_name: str):
    logging.info('start')

    # download data
    con = ConnectionUtil.create_con()
    storage = Storage(events_file, no_event_time_shift, table_name)
    d = storage.load_data(con, 0, 0, 'rh_in2_specific_g_kg')
    logging.info('downloaded events: %d' % len(d))

    # apply filters to data
    filtered = FilterUtil.only_valid_events(d)
    # filtered = FilterUtil.temperature_diff(filtered, 5, 100)
    # filtered = FilterUtil.temperature_out_max(filtered, 15)
    # filtered = FilterUtil.humidity(filtered, 6, 1.6, 100)

    # for travis
    no_ev_records = no_events_records
    if ConnectionUtil.is_testable_system():
        filtered = filtered[:ConnectionUtil.MAX_TESTABLE_EVENTS]
        no_ev_records = no_events_records[:ConnectionUtil.MAX_TESTABLE_EVENTS]

    logging.info('events after applying the filter: %d' % len(filtered))

    row_selector = CachedDiffRowWithIntervalSelector(con, table_name, 0, 0)
    interval_selector = SimpleIntervalSelector(con, table_name)

    logging.info('start computing of training set')
    training, tr_events = AttributeUtil.training_data(con, table_name,
                                                      filtered, func,
                                                      row_selector,
                                                      interval_selector,
                                                      'open')
    count = len(training)
    logging.info('training set contains %d events (%d records)' %
                 (count / 2, count))

    training2 = AttributeUtil.additional_training_set(con, table_name,
                                                      no_ev_records, func,
                                                      row_selector,
                                                      interval_selector)
    count2 = len(training2)
    logging.info('additional training set contains %d records' % count2)

    logging.info('end computing of training set')

    logging.info('start preparing file of training set')
    balanced = AttributeUtil.balance_set(training, training2)
    CSVUtil.create_csv_file(balanced, 'training.csv')
    logging.info('end preparing file of training set')
예제 #3
0
def test_db_connection():
    con = ConnectionUtil.create_con()

    cur = con.cursor()
    cur.execute('SELECT VERSION()')
    res = cur.fetchone()

    logging.info(res)
예제 #4
0
def testing_set(table_name: str, start, end, filename):
    logging.info('start')

    con = ConnectionUtil.create_con()

    logging.info('start computing of testing set')
    length = AttributeUtil.testing_data_with_write(con, table_name, start, end, 30, func,
                                                   None, None, 'open', filename)
    logging.info('testing set contains %d records' % length)
    logging.info('end computing of testing set')

    logging.info('end')
예제 #5
0
def generate_file(con, start_shift, end_shift, output_file, enable_regression):
    logging.info('start: ' + output_file)

    graphs = Graph("./../../src/graph")

    # stiahnutie dat
    storage = Storage('examples/events_peto.json', 0, 'measured_filtered_peto')
    d = storage.load_data(con, start_shift, end_shift, 'co2_in_ppm')
    logging.info('downloaded events: %d' % len(d))

    # aplikovanie filtrov na eventy
    filtered = FilterUtil.only_valid_events(d)

    # for travis
    if ConnectionUtil.is_testable_system():
        filtered = filtered[:ConnectionUtil.MAX_TESTABLE_EVENTS]

    logging.info('events after applying the filter: %d' % len(filtered))

    # spocitanie regresie
    if enable_regression:
        filtered = compute_regression(filtered)

    logging.info('start generating graphs')
    gr = []
    for event in filtered:
        t = DateTimeUtil.utc_timestamp_to_str(event['e_start']['timestamp'], '%d.%m. %H:%M:%S')
        t += ' - '
        t += DateTimeUtil.utc_timestamp_to_str(event['e_end']['timestamp'], '%H:%M:%S')

        if enable_regression:
            gg = [
                Graph.db_to_simple_graph(event, 'co2_in_ppm', 'green', 'CO2', 50),
                Graph.db_to_simple_graph(event, 'co2_in_ppm_exp', 'red', 'SimpleExpRegression', 50),
                Graph.db_to_simple_graph(event, 'co2_in_ppm_exp2', 'orange', 'ExpRegressionWithDelay', 50),
            ]
        else:
            gg = [
                Graph.db_to_simple_graph(event, 'co2_in_ppm', 'green', 'CO2', 50),
            ]

        g = {
            'title': t,
            'graphs': gg
        }
        gr.append(g)

    graphs.gen(gr, output_file + '.html', 0, 0)
    logging.info('end generating graphs')

    logging.info('end')
예제 #6
0
def training_set(events_file: str, no_event_time_shift: int, table_name: str):
    logging.info('start')

    # stiahnutie dat
    con = ConnectionUtil.create_con()
    storage = Storage(events_file, no_event_time_shift, table_name)
    d = storage.load_data(con, 0, 0, 'co2_in_ppm')
    logging.info('downloaded events: %d' % len(d))

    # aplikovanie filtrov na eventy
    filtered = FilterUtil.only_valid_events(d)

    # for travis
    if ConnectionUtil.is_testable_system():
        filtered = filtered[:ConnectionUtil.MAX_TESTABLE_EVENTS]

    logging.info('events after applying the filter: %d' % len(filtered))

    # selector pre data
    row_selector = CachedDiffRowWithIntervalSelector(con, table_name, 0, 0)
    interval_selector = None

    # datova mnozina
    logging.info('start computing of data set')
    data = AttributeUtil.training_data_without_opposite(
        con, table_name, filtered, func, row_selector, interval_selector)
    logging.info('data set contains %d events' % len(data))
    logging.info('end computing of data set')

    # generovanie suborov
    logging.info('start preparing file of training and testing set')
    random.seed(len(data) // 2)
    random.shuffle(data)

    CSVUtil.create_csv_file(data, 'data.csv')
    logging.info('end preparing file of training and testing set')

    logging.info('end')
예제 #7
0

def list_of_processes(directory='ventilation_length'):
    return [
        '//DIP/{0}/RandomForest'.format(directory),
        '//DIP/{0}/NeuralNet'.format(directory),
    ]


if __name__ == '__main__':
    logging.basicConfig(level=logging.DEBUG,
                        format='%(asctime)s %(levelname)s %(message)s')

    logging.info('start')

    launcher = ConnectionUtil.rapid_miner()['launcher']

    out_s_maskou = []
    out_s_exp = []

    all = []
    for proc in list_of_processes():
        proc_name = proc.split('/')[-1]
        row_klasicky = [('nazov', proc_name), ('pristup', 'klasicky')]
        row_s_maskou = [('nazov', proc_name), ('pristup', 's_maskou')]
        row_s_exp = [('nazov', proc_name), ('pristup', 's_exp')]

        for bin in range(2, 33):
            cmd = [
                launcher,
                proc,
예제 #8
0
    title = 'window_size:{0},threshold:{1}'.format(window_size, threshold)
    gen_graph(events_delays, action, extensions, title)

    logger.disabled = False


if __name__ == '__main__':
    logging.basicConfig(level=logging.DEBUG,
                        format='%(asctime)s %(levelname)s %(message)s')

    logging.info('start')
    table_name = 'measured_filtered_peto'

    # stiahnutie dat
    con = ConnectionUtil.create_con()
    storage = Storage('examples/events_peto.json', 0, table_name)
    d = storage.load_data(con, 0, 0, 'co2_in_ppm')
    logging.info('downloaded events: %d' % len(d))

    # aplikovanie filtrov na eventy
    filtered = FilterUtil.only_valid_events(d)

    # for travis
    if ConnectionUtil.is_testable_system():
        filtered = filtered[:ConnectionUtil.MAX_TESTABLE_EVENTS]

    logging.info('events after applying the filter: %d' % len(filtered))

    extensions = ['eps']
    delays(filtered, extensions, ['save'], 11, 15)
예제 #9
0
def main(events_file: str, owner: str, start_shift: int, end_shift: int,
         output_filename: str, number_output_records: int):
    """

    :param events_file: path to file containing list of events
    :param owner: sensor owner(klarka|peto), name must be the same as in database
    :param start_shift: shift of beginning of data downloading
    :param end_shift: shift of end of data downloading
    :param output_filename: filename to store a graph
    :param number_output_records: number of points that are required in graph
    :return:
    """

    logging.info('start: ' + output_filename)
    graphs = Graph("./../../src/graph")

    # download data
    con = ConnectionUtil.create_con()
    storage = Storage(events_file, 0, 'measured_' + owner)
    d = storage.load_data(con, start_shift, end_shift,
                          'temperature_in_celsius')
    logging.info('downloaded events: %d' % len(d))

    # apply filters to downloaded data
    filtered = FilterUtil.only_valid_events(d)
    filtered = FilterUtil.temperature_diff(filtered, 5, 100)
    filtered = FilterUtil.temperature_out_max(filtered, 15)
    filtered = FilterUtil.humidity(filtered, 6, 1.6, 100)

    # for travis
    if ConnectionUtil.is_testable_system():
        filtered = filtered[:ConnectionUtil.MAX_TESTABLE_EVENTS]

    if owner == 'klarka':
        filtered = FilterUtil.attribute(filtered, 'window', 'dokoran')

    logging.info('events after applying the filter: %d' % len(filtered))

    # data for graph generation measured using sensor 1
    sensor1_events = filtered
    logging.info('event count: %d for senzor 1' % len(sensor1_events))

    # data for graph generation measured using sensor 2
    sensor2 = [
        'rh_in2_percentage', 'rh_in2_specific_g_kg', 'rh_in2_absolute_g_m3'
    ]
    sensor2_events = FilterUtil.measured_values_not_empty(filtered, sensor2)
    logging.info('event count: %d for senzor 2' % len(sensor2_events))

    # graph generation - sensor 1
    logging.info('start generating graphs of events from sensor 1')
    graphs_sensor_1 = []
    for event in sensor1_events:
        graphs_sensor_1 += generate_graphs_sensor_1(event, owner,
                                                    number_output_records)

    graphs.gen(graphs_sensor_1, 'sensor1_' + output_filename, 0, 0)
    logging.info('end generating graphs of events from sensor 1')

    # graph generation - sensor 2
    logging.info('start generating graphs of events from sensor 2')
    graphs_sensor_2 = []
    for event in sensor2_events:
        graphs_sensor_2 += generate_graphs_sensor_2(event, owner,
                                                    number_output_records)

    graphs.gen(graphs_sensor_2, 'sensor2_' + output_filename, 0, 0)
    logging.info('end generating graphs of events from sensor 2')

    logging.info('end')
예제 #10
0
def generate_file(con, start_shift, end_shift, output_file):
    logging.info('start: ' + output_file)

    graphs = Graph("./../../src/graph")

    # download data
    storage = Storage('examples/events_klarka_shower.json', 0, 'measured_klarka_shower')
    d = storage.load_data(con, start_shift, end_shift, 'temperature_in_celsius')
    logging.info('downloaded events: %d' % len(d))

    # apply filters to events
    filtered = FilterUtil.only_valid_events(d)

    # for travis
    if ConnectionUtil.is_testable_system():
        filtered = filtered[:ConnectionUtil.MAX_TESTABLE_EVENTS]

    logging.info('events after applying the filter: %d' % len(filtered))

    fill_start_end(filtered)

    logging.info('start generating graphs')
    gr = []
    for event in filtered:
        t = DateTimeUtil.utc_timestamp_to_str(event['e_start']['timestamp'], '%d.%m. %H:%M:%S')
        t += ' - '
        t += DateTimeUtil.utc_timestamp_to_str(event['e_end']['timestamp'], '%H:%M:%S')

        g = {
            'title': t,
            'group': 'one',
            'graphs': [
                Graph.db_to_simple_graph(event, 'temperature_in_celsius', 'blue',
                                         'Temperature', 75),
                Graph.db_to_simple_graph(event, 'open_close', 'orange', 'Open', 75),
            ]
        }
        gr.append(g)

        g = {
            'title': t,
            'group': 'two',
            'graphs': [
                Graph.db_to_simple_graph(event, 'rh_in_percentage', 'red',
                                         'Relative humidity [%]', 75),
                Graph.db_to_simple_graph(event, 'open_close', 'orange', 'Open', 75),
            ]
        }
        gr.append(g)

        g = {
            'title': t,
            'group': 'tree',
            'graphs': [
                Graph.db_to_simple_graph(event, 'rh_in_absolute_g_m3', 'green',
                                         'Absolute humidity [g/m3]', 75),
                Graph.db_to_simple_graph(event, 'open_close', 'orange', 'Open', 75),
            ]
        }
        gr.append(g)

        g = {
            'title': t,
            'group': 'four',
            'graphs': [
                Graph.db_to_simple_graph(event, 'rh_in_specific_g_kg', 'purple',
                                         'Specific humidity [g/kg]', 75),
                Graph.db_to_simple_graph(event, 'open_close', 'orange', 'Open', 75),
            ]
        }
        gr.append(g)

    graphs.gen(gr, output_file + '.html', 0, 0, global_range=True)
    logging.info('end generating graphs')
예제 #11
0
                Graph.db_to_simple_graph(event, 'rh_in_absolute_g_m3', 'green',
                                         'Absolute humidity [g/m3]', 75),
                Graph.db_to_simple_graph(event, 'open_close', 'orange', 'Open', 75),
            ]
        }
        gr.append(g)

        g = {
            'title': t,
            'group': 'four',
            'graphs': [
                Graph.db_to_simple_graph(event, 'rh_in_specific_g_kg', 'purple',
                                         'Specific humidity [g/kg]', 75),
                Graph.db_to_simple_graph(event, 'open_close', 'orange', 'Open', 75),
            ]
        }
        gr.append(g)

    graphs.gen(gr, output_file + '.html', 0, 0, global_range=True)
    logging.info('end generating graphs')


if __name__ == '__main__':
    logging.basicConfig(level=logging.DEBUG,
                        format='%(asctime)s %(levelname)s %(message)s', )

    con = ConnectionUtil.create_con()

    generate_file(con, 0, 0, 'shower')
    generate_file(con, -900, +900, 'shower_with_shift')
예제 #12
0
def main(events_file: str, no_event_time_shift: int):
    logging.info('start')

    table_name = 'measured_klarka'

    # download data
    con = ConnectionUtil.create_con()
    storage = Storage(events_file, no_event_time_shift, table_name)
    d = storage.load_data(con, 0, 0, 'rh_in2_specific_g_kg')
    logging.info('downloaded events: %d' % len(d))

    # apply filters to data
    filtered = FilterUtil.only_valid_events(d)
    # filtered = FilterUtil.temperature_diff(filtered, 5, 17.5)
    # filtered = FilterUtil.temperature_diff(filtered, 17.5, 30)
    # filtered = FilterUtil.temperature_diff(filtered, 5, 13.3)
    # filtered = FilterUtil.temperature_diff(filtered, 13.3, 21.6)
    # filtered = FilterUtil.temperature_diff(filtered, 21.6, 30)
    # filtered = FilterUtil.temperature_diff(filtered, 10, 15)
    # filtered = FilterUtil.temperature_diff(filtered, 15, 20)
    # filtered = FilterUtil.temperature_diff(filtered, 20, 25)
    logging.info('events after applying the filter: %d' % len(filtered))

    row_selector = CachedDiffRowWithIntervalSelector(con, table_name, 0, 0)
    interval_selector = SimpleIntervalSelector(con, table_name)

    # data set
    logging.info('start computing of data set')
    data = AttributeUtil.training_data_without_opposite(
        con, table_name, filtered, func, row_selector, interval_selector)
    logging.info('data set contains %d events' % len(data))
    logging.info('end computing of data set')

    # split data set into training and testing set
    random.seed(len(data) // 2)
    random.shuffle(data)
    training, testing, minimum = training_testing_data(data, 0.7)

    logging.info('training set contains %d records, each %d-krat' %
                 (len(training), minimum))
    logging.info('testing set contains %d records' % len(testing))

    training_testing_data_with_distance(copy.deepcopy(training),
                                        copy.deepcopy(testing), 0,
                                        CenterLineSlope(), "trendline_", False,
                                        False, False, False)
    training_testing_data_with_distance(copy.deepcopy(training),
                                        copy.deepcopy(testing), 1,
                                        PolyfitLineAvgSlope(), "polyfit_",
                                        False, False, False, False)
    training_testing_data_with_distance(copy.deepcopy(training),
                                        copy.deepcopy(testing), 2,
                                        CenterLineSlope(), "center_", False,
                                        False, False, False)
    training_testing_data_only_distance(copy.deepcopy(training),
                                        copy.deepcopy(testing), 3,
                                        CenterLineSlope(), "trendline_", False,
                                        False, False, False)
    training_testing_data_only_distance(copy.deepcopy(training),
                                        copy.deepcopy(testing), 4,
                                        PolyfitLineAvgSlope(), "polyfit_",
                                        False, False, False, False)
    training_testing_data_only_distance(copy.deepcopy(training),
                                        copy.deepcopy(testing), 5,
                                        CenterLineSlope(), "center_", False,
                                        False, False, False)

    training_testing_data_without_distance(copy.deepcopy(training),
                                           copy.deepcopy(testing), 6,
                                           CenterLineSlope(), "trendline_",
                                           False, False, False, False)

    logging.info('end')
예제 #13
0
def main(events_file: str, start_shift: int, end_shift: int,
         output_filename: str, output_records: int):
    logging.info('start')
    graphs = Graph("./../../src/graph")

    # download data
    con = ConnectionUtil.create_con()
    storage = Storage(events_file, 0, 'measured_klarka')
    d = storage.load_data(con, start_shift, end_shift,
                          'temperature_in_celsius')
    logging.info('downloaded events: %d' % len(d))

    # apply filters to events
    filtered = FilterUtil.only_valid_events(d)
    filtered = FilterUtil.temperature_diff(filtered, 5, 100)
    filtered = FilterUtil.temperature_out_max(filtered, 15)
    filtered = FilterUtil.humidity(filtered, 6, 1.6, 100)

    min_timestamp = int(
        DateTimeUtil.local_time_str_to_utc('2018/11/01 00:01:00').timestamp())
    filtered = FilterUtil.min_timestamp(filtered, min_timestamp)

    filtered = FilterUtil.min_max_time_interval(filtered, 1440, 1620)

    # for travis
    if ConnectionUtil.is_testable_system():
        filtered = filtered[:ConnectionUtil.MAX_TESTABLE_EVENTS]

    logging.info('events after applying the filter: %d' % len(filtered))

    # data for graph generation measured using sensor 1
    sensor1_events = filtered
    logging.info('event count: %d for senzor 1' % len(sensor1_events))
    linear_reg(sensor1_events, 'rh_in_specific_g_kg', 'linear1_sh')
    linear_reg(sensor1_events, 'rh_in_absolute_g_m3', 'linear1_ah')
    linear_reg(sensor1_events, 'temperature_in_celsius', 'linear1_temp')

    # graph generation - sensor 1
    logging.info('start generating graphs of events from sensor 1')
    graphs_sensor_1 = []
    for event in sensor1_events:
        graphs_sensor_1 += gen_graphs(event, output_records, [
            'rh_in_specific_g_kg', 'rh_in_absolute_g_m3',
            'temperature_in_celsius'
        ], ['linear1_sh', 'linear1_ah', 'linear1_temp'])

    graphs.gen(graphs_sensor_1,
               'sensor1_' + output_filename,
               0,
               0,
               global_range=True)
    logging.info('end generating graphs of events from sensor 1')

    # data for graph generation measured using sensor 2
    sensor2_events = filtered
    logging.info('event count: %d for sensor 2' % len(sensor2_events))

    sensor2_events = FilterUtil.measured_values_not_empty(
        sensor2_events, 'rh_in2_specific_g_kg')
    sensor2_events = FilterUtil.measured_values_not_empty(
        sensor2_events, 'rh_in2_absolute_g_m3')
    sensor2_events = FilterUtil.measured_values_not_empty(
        sensor2_events, 'temperature_in2_celsius')
    logging.info('events after applying the filter: %d' % len(sensor2_events))

    linear_reg(sensor2_events, 'rh_in2_specific_g_kg', 'linear2_sh')
    linear_reg(sensor2_events, 'rh_in2_absolute_g_m3', 'linear2_ah')
    linear_reg(sensor2_events, 'temperature_in2_celsius', 'linear2_temp')

    humidity_info_csv(sensor2_events, start_shift, end_shift)

    # graph generation - sensor 2
    logging.info('start generating graphs of events from sensor 2')
    graphs_sensor_2 = []
    for event in sensor2_events:
        graphs_sensor_2 += gen_graphs(event, output_records, [
            'rh_in2_specific_g_kg', 'rh_in2_absolute_g_m3',
            'temperature_in2_celsius'
        ], ['linear2_sh', 'linear2_ah', 'linear2_temp'])

    graphs.gen(graphs_sensor_2,
               'sensor2_' + output_filename,
               0,
               0,
               global_range=True)
    logging.info('end generating graphs of events from sensor 2')

    logging.info('end')