예제 #1
0
def test_svm_loss():
    # Test svm_loss function.

    num_classes, num_inputs = 10, 50
    x = 0.001 * np.random.randn(num_inputs, num_classes)
    y = np.random.randint(num_classes, size=num_inputs)

    dx_num = eval_numerical_gradient(lambda x: svm_loss(x, y)[0], x, verbose=False)
    loss, dx = svm_loss(x, y)

    assert rel_error(dx, dx_num) < 1e-8
예제 #2
0
def rel_err_gradients():
    """
    Return the relative error between analytic and nemerical gradients.
    """
    # Number of layer units
    n_samples = 100
    input_size = 4 * 4
    hidden_size = 4
    output_size = input_size
    layer_units = (input_size, hidden_size, output_size)

    X_train = np.random.randn(n_samples, input_size)
    reg = 1e-4
    beta = 3  # weight of sparsity penalty term
    sparsity_param = 1e-1  # desired average activation of the hidden units

    # Define the classifier
    sae = SparseAutoencoder(layer_units)

    # Initialize weights
    weights = sae.init_weights()

    # Analytic gradients of the cost function
    cost, grad = sparse_autoencoder_loss(weights,
                                         X_train,
                                         reg,
                                         beta=beta,
                                         sparsity_param=sparsity_param)
    grad = sae.flatten_struct(grad)  # Flattened gradients

    def J(theta):
        # Structured weights
        weights = sae.pack_struct(theta)
        return sparse_autoencoder_loss(weights,
                                       X_train,
                                       reg,
                                       beta=beta,
                                       sparsity_param=sparsity_param)[0]

    theta = sae.flatten_struct(weights)
    numerical_grad = eval_numerical_gradient(J, theta)

    # Compare numerically computed gradients with those computed analytically
    rel_err = rel_norm_diff(numerical_grad, grad)

    return rel_err
예제 #3
0
파일: nnet.py 프로젝트: tsaith/dnn_play
def rel_err_gradients():
    """
    Return the relative error between analytic and nemerical gradients.
    """

    # Number of layer units
    n_samples = 100
    input_size  = 4 * 4
    hidden_size = 4
    n_classes = 10
    layer_units = (input_size, hidden_size, n_classes)

    X_train = np.random.randn(n_samples, input_size)
    y_train = np.random.randint(n_classes, size=n_samples)
    reg = 1e-4

    # Define the classifier
    clf = NeuralNet(layer_units)

    # Initialize weights
    weights = clf.init_weights()

    # Analytic gradients of the cost function
    cost, grad = neural_net_loss(weights, X_train, y_train, reg)
    grad = clf.flatten_struct(grad) # Flattened gradients

    def J(theta):
        # Structured weights
        weights = clf.pack_struct(theta)
        return neural_net_loss(weights, X_train, y_train, reg)[0]

    theta = clf.flatten_struct(weights)
    numerical_grad = eval_numerical_gradient(J, theta)

    # Compare numerically computed gradients with those computed analytically
    rel_err = rel_norm_diff(numerical_grad, grad)

    return rel_err
예제 #4
0
파일: mlp.py 프로젝트: tsaith/handpose
def rel_err_gradients():
    """
    Return the relative error between analytic gradients and nemerical ones.
    """
    # Number of layer units
    n_samples = 100
    input_size = 4 * 4
    hidden_size_L1 = 4
    hidden_size_L2 = 4
    output_size = 10
    layer_units = (input_size, hidden_size_L1, hidden_size_L2, output_size)

    X_train = np.random.randn(n_samples, input_size)
    y_train = np.random.randint(output_size, size=n_samples)
    reg = 1e-4

    # Define the classifier
    clf = MLP(layer_units)

    # Initialize weights
    weights = clf.init_weights()

    # Analytic gradients of the cost function
    cost, grad = mlp_loss(weights, X_train, y_train, reg)
    grad = clf.flatten_struct(grad)  # Flattened gradients

    def J(theta):
        # Structured weights
        weights = clf.pack_struct(theta)
        return mlp_loss(weights, X_train, y_train, reg)[0]

    theta = clf.flatten_struct(weights)
    numerical_grad = eval_numerical_gradient(J, theta)

    # Compare numerically computed gradients with those computed analytically
    rel_err = rel_norm_diff(numerical_grad, grad)

    return rel_err