import sys import matplotlib.pyplot as plt import time sys.path.append('.') from docrec.strips.strips import Strips # segmentation print('=> Segmentation') t0 = time.time() strips = Strips(path='datasets/D2/mechanical/D002', filter_blanks=True) strips.plot() plt.show() print('Strips elapsed time={:.2f} seconds'.format(time.time() - t0)) N = len(strips.strips) fig = plt.figure(figsize=(8, 8), dpi=150) for i in range(N): for j in range(N): if i + 1 == j: t0 = time.time() print(i, j, N) image = strips.pair(i, j, filled=True) print('Pairing time={:.2f} seconds'.format(time.time() - t0)) plt.clf() plt.imshow(image) #plt.savefig('/home/thiagopx/temo/{}-{}.pdf'.format(i, j)) plt.show() #strips.plot()
t0_global = time.time() print('=> Segmentation') t0 = time.time() #strips = StripsText(path=args.doc, filter_blanks=True) strips = Strips(path=args.doc, filter_blanks=True) print('Segmentation elapsed time={:.2f} seconds'.format(time.time() - t0)) N = len(strips.strips) pcont = 0.2 scores = np.zeros((N, N), dtype=np.int32) for i in range(N - 1): border = strips.strips[i].offsets_r j = i + 1 print('=> Scoring [{}][{}]'.format(i, j)) image = strips.pair(i, j, accurate=True, filled=True) h, w, _ = image.shape _, image_bin = cv2.threshold(cv2.cvtColor(image, cv2.COLOR_RGB2GRAY), 0, 1, cv2.THRESH_BINARY + cv2.THRESH_OTSU) # range [0, 1] temp = image_bin.astype(np.float32) image3 = np.stack([temp, temp, temp]) batch = [] total_inferences = 0 yx = [] labels = [] for y in range(radius, h - radius): x = border[y] crop = image3[:, y - radius:y + radius + 1, x - radius:x + radius + 1]