예제 #1
0
def diagnose_condition(symptoms, age_group=None):
    """Prevents the segfault from bringing the entire process down.

  This function *MUST* be run in a background thread.

  For example:

    symptoms = ['fever', 'swollenglands']
    t = threading.Thread(target=diagnose_condition, args=(symptoms))
    t.start()
    t.join()
    print diagnosis
    >>> 'mumps'
  """

    global diagnosis
    from doctor import Doctor

    d = Doctor('medical.pl')
    diagnosis = d.diagnose(symptoms, age_group)
    return
예제 #2
0
파일: app.py 프로젝트: JSkally/ai
def diagnose_condition(symptoms, age_group=None):
  """Prevents the segfault from bringing the entire process down.

  This function *MUST* be run in a background thread.

  For example:

    symptoms = ['fever', 'swollenglands']
    t = threading.Thread(target=diagnose_condition, args=(symptoms))
    t.start()
    t.join()
    print diagnosis
    >>> 'mumps'
  """

  global diagnosis
  from doctor import Doctor

  d = Doctor('medical.pl')
  diagnosis = d.diagnose(symptoms,age_group)
  return
예제 #3
0
df = pd.read_csv('./Training.csv')  # training data df
df_test = pd.read_csv('./Testing.csv')  # testing data df
#print(df)
#print(df_test)

# encode prognosis values and store them
le = preprocessing.LabelEncoder()
le.fit(pd.concat([df['prognosis'], df_test['prognosis']]))
encoded_prognosis = le.transform(df['prognosis'])

# initialize and train doctor
doctor = Doctor()
doctor.train(df)

# get diagnosis with testing data
y_diagnosis = doctor.diagnose(df_test[df_test.columns.difference(['prognosis'
                                                                  ])])
y_pred = [
    diagnosis_entry["diagnosis_code"] for diagnosis_entry in y_diagnosis
]  # predicted encoded diagnosis values
y_proba = [diagnosis_entry["probability"] for diagnosis_entry in y_diagnosis
           ]  # probability vakues for each preciction

# compare your prediction with actual values
y_true = doctor.diagnosis_encoder.transform(df_test['prognosis'])

print("Accuracy:", metrics.accuracy_score(y_true, y_pred))
print("Classification Report:")
print(classification_report(y_true, y_pred, target_names=df_test['prognosis']))

print("\nTesting Data Results")
test_res = []