예제 #1
0
    def __init__(self, num_inputs, num_outputs):
        super(Bernoulli, self).__init__()

        init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init.
                               constant_(x, 0))

        self.linear = init_(nn.Linear(num_inputs, num_outputs))
예제 #2
0
    def __init__(self, num_inputs, num_outputs):
        super(DiagGaussian, self).__init__()

        init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init.
                               constant_(x, 0))

        self.fc_mean = init_(nn.Linear(num_inputs, num_outputs))
        self.logstd = AddBias(torch.zeros(num_outputs))
예제 #3
0
    def __init__(self, num_inputs, num_outputs):
        super(Categorical, self).__init__()

        init_ = lambda m: init(m,
                               nn.init.orthogonal_,
                               lambda x: nn.init.constant_(x, 0),
                               gain=0.01)

        self.linear = init_(nn.Linear(num_inputs, num_outputs))
예제 #4
0
    def __init__(self, num_inputs, recurrent=False, hidden_size=512):
        super(CNNBase, self).__init__(recurrent, hidden_size, hidden_size)

        init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init.
                               constant_(x, 0), nn.init.calculate_gain('relu'))

        # TODO need to do some calculation here on the dimensions given differently
        # sized inputs
        #
        self.main = nn.Sequential(
            init_(nn.Conv2d(num_inputs, 32, 8, stride=4)), nn.ReLU(),
            init_(nn.Conv2d(32, 64, 4, stride=2)), nn.ReLU(),
            init_(nn.Conv2d(64, 32, 3, stride=1)), nn.ReLU(), Flatten(),
            init_(nn.Linear(32 * 7 * 7, hidden_size)), nn.ReLU())

        init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init.
                               constant_(x, 0))

        self.critic_linear = init_(nn.Linear(hidden_size, 1))

        self.train()
예제 #5
0
    def __init__(self, num_inputs, recurrent=False, hidden_size=64):
        super(MLPBase, self).__init__(recurrent, num_inputs, hidden_size)

        if recurrent:
            num_inputs = hidden_size

        init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init.
                               constant_(x, 0), np.sqrt(2))

        self.actor = nn.Sequential(init_(nn.Linear(num_inputs, hidden_size)),
                                   nn.Tanh(),
                                   init_(nn.Linear(hidden_size, hidden_size)),
                                   nn.Tanh())

        self.critic = nn.Sequential(init_(nn.Linear(num_inputs, hidden_size)),
                                    nn.Tanh(),
                                    init_(nn.Linear(hidden_size, hidden_size)),
                                    nn.Tanh())

        self.critic_linear = init_(nn.Linear(hidden_size, 1))

        self.train()