else: im_file = fuse_radio_ir_4_pred(args.radio_fits, args.ir_png, model=args.model) vis_file = args.ir_png #print("im_file", im_file) if (im_file is None): print("Error in generating contours") sys.exit(1) hard_code_cfg() net = get_network('rgz_test') iter_num = 80000 if ('D3' == args.model): iter_num = 60000 model_weight = osp.join( get_rgz_root(), 'data/pretrained_model/rgz/%s/VGGnet_fast_rcnn-%d' % (args.model, iter_num)) if (not osp.exists(model_weight + '.index')): print( "Fail to load rgz model, have you done \'python download_data.py\' already?" ) sys.exit(1) saver = tf.train.Saver() sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) sys.stdout.write('Loading RGZ model from {:s}... '.format(model_weight)) sys.stdout.flush() stt = time.time() saver.restore(sess, model_weight) print(("Done in %.3f seconds" % (time.time() - stt))) sys.stdout.write("Detecting radio sources... ")
if ('D1' == args.model): im_file = args.radio_png vis_file = args.radio_png else: im_file = fuse_radio_ir_4_pred(args.radio_fits, args.ir_png, model=args.model) vis_file = args.ir_png #print("im_file", im_file) if (im_file is None): print("Error in generating contours") sys.exit(1) hard_code_cfg() net = get_network('rgz_test') iter_num = 80000 if ('D3' == args.model): iter_num = 60000 model_weight = osp.join(get_rgz_root(), 'data/pretrained_model/rgz/%s/VGGnet_fast_rcnn-%d' % (args.model, iter_num)) if (not osp.exists(model_weight + '.index')): print("Fail to load rgz model, have you done \'python download_data.py\' already?") sys.exit(1) saver = tf.train.Saver() sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) sys.stdout.write('Loading RGZ model from {:s}... '.format(model_weight)) sys.stdout.flush() stt = time.time() saver.restore(sess, model_weight) print("Done in %.3f seconds" % (time.time() - stt)) sys.stdout.write("Detecting radio sources... ") sys.stdout.flush() ret = demo(sess, net, im_file, vis_file, args.radio_fits, conf_thresh=args.conf_thresh, eval_class=(not args.eval_eoi))