################ # EXAMPLE CODE # ################ # setup the mockingjay model options = { 'ckpt_file': 'result/result_mockingjay/mockingjay_libri_sd1337_MelBase/mockingjay-500000.ckpt', 'load_pretrain': 'True', 'no_grad': 'False', 'dropout': 'default' } model = MOCKINGJAY(options=options, inp_dim=160) # setup your downstream class model classifier = example_classifier(input_dim=768, hidden_dim=128, class_num=2).cuda() # construct the Mockingjay optimizer params = list(model.named_parameters()) + list(classifier.named_parameters()) optimizer = get_mockingjay_optimizer(params=params, lr=4e-3, warmup_proportion=0.7, training_steps=50000) # forward example_inputs = torch.zeros( 1200, 3, 160) # A batch of spectrograms: (time_step, batch_size, dimension) reps = model(example_inputs) # returns: (time_step, batch_size, hidden_size) reps = reps.permute(1, 0, 2) # change to: (batch_size, time_step, feature_size)
def __init__(self, options): super(Model, self).__init__() self.model = MOCKINGJAY(options=options, inp_dim=160) self.classifier = example_classifier(input_dim=768, hidden_dim=128, class_num=133)