url = img_file.replace(IMG_PATH, IMG_URL) return { 'code': 0, 'msg': 'success', 'data': { 'url': url, 'objects': res, 'caption': caption, 'tts_caption': tts_url } } if __name__ == '__main__': """服务入口""" port = 8026 # log init log_file = ApiObjectDetect.__name__.lower() # + '-' + str(os.getpid()) utils.init_logging(log_file=log_file, log_path=APP_PATH) print("log_file: {}".format(log_file)) # 路由 app = tornado.web.Application(handlers=[(r'/piglab/image/object_detect', ApiObjectDetect)]) # 启动服务 http_server = tornado.httpserver.HTTPServer(app, xheaders=True) http_server.listen(port) tornado.ioloop.IOLoop.instance().start()
if (i + 1) % self.check_freq == 0: logging.info("TRAIN Current self-play batch: {}".format(i + 1)) # 策略胜率评估:模型与纯MCTS玩家对战n局看胜率 win_ratio = self.policy_evaluate(self.policy_evaluate_size) self.policy_value_net.save_model(CUR_PATH + '/model/current_policy_{}x{}.model'.format(self.board_width, self.board_height)) if win_ratio > self.best_win_ratio: # 胜率超过历史最优模型 logging.info("TRAIN New best policy!!!!!!!!batch:{} win_ratio:{}->{} pure_mcts_playout_num:{}".format(i + 1, self.best_win_ratio, win_ratio, self.pure_mcts_playout_num)) self.best_win_ratio = win_ratio # 保存当前模型为最优模型best_policy self.policy_value_net.save_model(CUR_PATH + '/model/best_policy_{}x{}.model'.format(self.board_width, self.board_height)) # 如果胜率=100%,则增加纯MCT的模拟数 (<6000的限制视mem情况) if self.best_win_ratio == 1.0: # and self.pure_mcts_playout_num < 6000: self.pure_mcts_playout_num += 1000 self.best_win_ratio = 0.0 except KeyboardInterrupt: logging.info('\n\rquit') if __name__ == '__main__': # log init utils.init_logging(log_file='train', log_path=CUR_PATH) # train size = 16 # 棋盘大小 model_file = '{}/model/current_policy_{}x{}.model'.format(CUR_PATH, size, size) print("model file exists: {}".format(os.path.exists(model_file))) model_file = '' if os.path.exists(model_file) is False else model_file #training_pipeline = GomokuTrainPipeline(size=size) training_pipeline = GomokuTrainPipeline(init_model=model_file, size=size) training_pipeline.run()
# -*- coding: utf-8 -*- """ File: da.py Desc: 需求识别基类 Author:yanjingang([email protected]) Date: 2019/2/21 23:34 """ import logging from dp import utils from dp.da import Da import constants if __name__ == '__main__': """test""" utils.init_logging(log_file='da', log_path=constants.APP_PATH) da = Da(dict_path=constants.APP_PATH + "/data/da/") # 意图分类 #res = da.get_trigger("宝马3系报价") res = da.get_trigger("哪个恐龙跑的最快?") print("trigger: {}".format(res)) # 意图分类下的query解析 #res = da.get_parser(res[0]['type'], "宝马3系报价") res = da.get_parser(res[0]['type'], "哪个恐龙跑的最快?") #res = da.get_parser(res[0]['type'], "跑的最快的恐龙") print("parser: {}".format(res)) ''' # tree test tree = Node(name='root') ctree = tree.add_child(Node('car'))