import numpy as np import dp_stats as dps ### example of mean and variance x = np.random.rand(10) x_mu = dps.dp_mean( x, 1.0, 0.1 ) x_vr = dps.dp_var( x, 1.0, 0.1 ) print(x_mu) print(x_vr) ### example of DP-PCA d = 10 # data dimension n = 100 # number of samples k = 5 # true rank ### create covariance matrix A = np.zeros((d,d)) for i in range(d): if i < k: A[i,i] = d - i else: A[i, i] = 1 mean = 0.0 * np.ones(d) # true mean of the samples ### generate n samples samps = np.random.multivariate_normal(mean, A, n) # [nxd] sigma = np.dot(samps.T, samps) # sample covariance matrix U,S,V = np.linalg.svd(sigma, full_matrices=True) U_reduce = U[:,:k] quality = np.trace(np.dot(np.dot(U_reduce.T,A),U_reduce))
#while i < len(data): # if data[i] >= 1 or data[i] <=0: # print(i, data[i]) # # i = i + 1 ### example of mean and variance # x = np.random.rand(10) # sum = 0 # #print (sum / 10.0) histogram = plt.figure() # #print(x) x_mu = dps.dp_mean(newData, 1.0, 0.1) #print(x_mu) #print(dataMean) hist = dps.dp_hist(newData, num_bins=NUM_BINS, epsilon=1.0, delta=0.1, histtype='continuous') fakeData = np.zeros(len(newData)) print fakeData j = 0 offset = 0 for j in range(NUM_BINS):