def test_invalid_shape(self, shape): dp_array1 = dpnp.arange(10, dtype=dpnp.float64) dp_array2 = dpnp.arange(5, 15, dtype=dpnp.float64) dp_out = dpnp.empty(shape, dtype=dpnp.float64) with pytest.raises(ValueError): dpnp.power(dp_array1, dp_array2, out=dp_out)
def test_power(array, val, data_type, val_type): a = numpy.array(array, dtype=data_type) ia = inp.array(a) val_ = val_type(val) result = inp.power(ia, val_) expected = numpy.power(ia, val_) numpy.testing.assert_array_equal(expected, result)
def test_power(array, val, data_type, val_type): np_a = numpy.array(array, dtype=data_type) dpnp_a = dpnp.array(array, dtype=data_type) val_ = val_type(val) result = dpnp.power(dpnp_a, val_) expected = numpy.power(np_a, val_) numpy.testing.assert_array_equal(expected, result)
def test_power(self): array1_data = numpy.arange(10) array2_data = numpy.arange(5, 15) out = numpy.empty(10, dtype=numpy.float64) # DPNP dp_array1 = dpnp.array(array1_data, dtype=dpnp.float64) dp_array2 = dpnp.array(array2_data, dtype=dpnp.float64) dp_out = dpnp.array(out, dtype=dpnp.float64) result = dpnp.power(dp_array1, dp_array2, out=dp_out) # original np_array1 = numpy.array(array1_data, dtype=numpy.float64) np_array2 = numpy.array(array2_data, dtype=numpy.float64) expected = numpy.power(np_array1, np_array2, out=out) numpy.testing.assert_array_equal(expected, result)
def __pow__(self, other): return dpnp.power(self, other)